The pathogen Phytophthora cinnamomi causes extensive ‘dieback’ of Australian native vegetation. This study investigated the distribution of infection in an area of significant sclerophyll vegetation in Australia. It aimed to determine the relationship of infection to site variables and to develop a predictive model of infection. Site variables recorded at 50 study sites included aspect, slope, altitude, proximity to road and road characteristics, soil profile characteristics and vegetation attributes. Soil and plant tissues were assayed for the presence of the pathogen. A geographical information systyem (GIS) was employed to provide accurate estimations of spatial variables and develop a predictive model for the distribution of P. cinnamomi. The pathogen was isolated from 76% of the study sites. Of the 17 site variables initially investigated during the study a logistic regression model identified only two, elevation and sun‐index, as significant in determining the probability of infection. The presence of P. cinnamomi infection was negatively associated with elevation and positively associated with sun‐index. The model predicted that up to 74% of the study area (11 875 ha) had a high probability of being affected by P. cinnamomi. However, the present areas of infection were small, providing an opportunity for management to minimize spread into highly susceptible uninvaded areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.