Among white adults otosclerosis is the single most common cause of hearing impairment. Although the genetics of this disease are controversial, the majority of studies indicate autosomal dominant inheritance with reduced penetrance. We studied a large multi-generational family in which otosclerosis has been inherited in an autosomal dominant pattern. Five of16 affected persons have surgically confirmed otosclerosis; the remaining nine have a conductive hearing loss but have not undergone corrective surgery. To locate the disease-causing gene we completed genetic linkage analysis using short tandem repeat polymorphisms (STRPs) distributed over the entire genome. Multipoint linkage analysis showed that only one genomic region, on chromosome 15q, generated a lod score >2.0. Additional STRPs were typed in this area, resulting in a lod score of 3.4. STRPs FES (centromeric) and D15S657 (telomeric) flank the 14. 5 cM region that contains an otosclerosis gene.
Previously we described that bone morphogenetic protein 7 (BMP7) could protect prostate cancer C4-2B cells from serum starvation-induced apoptosis via survivin induction. Here, for the first time, we identify Runx2 as a key regulator of survivin transcription. In C4-2B cells grown normally, suppression of Runx2 reduced survivin expression. Using ChIP assays, two regions of the survivin promoter, −1953 to −1812 (I) and −1485 to −1119 (II) encompassing consensus Runx binding sites were examined. Runx2 was found to be associated with both regions with a stronger affinity to region I. In serum-starved cells neither region was occupied but BMP7 restored the association to region II, not I. In reporter assays, transcription activity by BMP7 was significantly reduced when sequences including binding sites of region II were deleted. Additionally, Runx2 expression was enhanced by BMP7 in these cells. Along with a strong survivin expression, a trend in increased Runx2 expression in human prostate cancer cells and tissues was noted. In the conditional Pten knockout mouse, Runx2 level increased with the growth of prostate tumor. The data define a novel role of Runx2 in regulating survivin expression in malignant epithelial cells and identify it as a critical factor in BMP signaling that protects cancer cells against apoptosis.
Autosomal recessive non-syndromic hearing loss (ARNSHL) is the most common form of prelingual inherited hearing impairment. A small consanguineous family with this disorder was ascertained through the Institute of Basic Medical Sciences in Madras, India. Conditions such as rubella, prematurity, drug use during pregnancy, perinatal trauma, and meningitis were eliminated by history. Audiometry was performed to confirm severe-to-profound hearing impairment in affected persons. After excluding linkage to known DFNB genes, two genomic DNA pools, one from the affected persons and the other from their non-affected siblings and the parents, were used to screen 165 polymorphic markers evenly spaced across the autosomal human genome. Two regions showing homozygosity-by-descent in the affected siblings were identified on chromosomes 3q21.3-q25.2 and 19p13.3-p13.1, identifying one (or possibly both) as the site of a novel ARNSHL gene.
Lung cancer nodules, particularly adenocarcinoma, contain a complex intermixing of cellular tissue types: incorporating cancer cells, fibroblastic stromal tissue, and inactive fibrosis. Quantitative proportions and distributions of the various tissue types may be insightful for understanding lung cancer growth, classification, and prognostic factors. However, current methods of histological assessment are qualitative and provide limited opportunity to systematically evaluate the relevance of lung nodule cellular heterogeneity. In this study we present both a manual and an automatic method for segmentation of tissue types in histological sections of resected human lung cancer nodules. A specialized staining approach incorporating immunohistochemistry with a modified Masson's Trichrome counterstain was employed to maximize color contrast in the tissue samples for automated segmentation. The developed, clustering-based, fully automated segmentation approach segments complete lung nodule crosssectional histology slides in less than 1 min, compared to manual segmentation which requires multiple hours to complete. We found the accuracy of the automated approach to be comparable to that of the manual segmentation with the added advantages of improved time efficiency, removal of susceptibility to human error, and 100% repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.