Studies on human perception have identified pelvis and torso motion as key discriminators between male and female gaits. However, while most observers would advocate that men and women walk differently, consistent findings and explanations of sex differences in gait kinematics across modern empirical studies are rare. In the present study we evaluated sex differences in whole body gait kinematics from a large sample of subjects (55 men, 36 women) walking at self selected speeds. We analyzed the data through comparisons of discrete metrics and whole curve analyses. Results showed that in the frontal plane, women walked with greater pelvic obliquity than men, but exhibited a more stable torso and head. Women had greater transverse plane pelvis and torso rotation as well as greater arm swing. Additional sex differences were noted at the hip and ankle. These kinematic results are in line with anectdotal observations and qualitative studies. In order to understand these observations and substantiate some of the explanations previously set forth in the biomechanics literature, we also explored possible reasons for dynamic sex effects, and suggested applications that may benefit from their consideration.
Morgan, AL, Laurent, CM, and Fullenkamp, AM. Comparison of V[Combining Dot Above]O2peak performance on a motorized vs. a nonmotorized treadmill. J Strength Cond Res 30(7): 1898-1905, 2016-Despite growing popularity of nonmotorized treadmills (NMTs), little data exist regarding responses during exercise testing using this equipment, which is important when providing an appropriate exercise prescription. The purpose of this study was to evaluate physiological and perceptual responses during peak graded exercise tests (GXTs) on a motorized treadmill (MT) vs. NMT. Volunteers (12 men and 12 women aged 18-35 years) performed 2 peak GXT sessions (1 MT and 1 NMT). Respiratory gases and heart rate (HR) were collected each minute; perceptual response was estimated (Borg's 6-20 rating of perceived exertion [RPE] scale) during the final 10 seconds of each stage. Peak values (i.e., V[Combining Dot Above]O2, HR, speed) were determined during the final 10 seconds of each test; ventilatory threshold (VT) was assessed using the V-slope method. Paired t-tests matching variables measured at each stage of the GXT identified significantly higher values on the NMT for V[Combining Dot Above]O2 83% of the time, HR 67% of the time, and RPE 25% of the time. Interestingly though, neither peak V[Combining Dot Above]O2 (48.6 ± 9.2 ml·kg·min vs. 47.8 ± 8.9 ml·kg·min), peak HR (185 ± 9 b·min vs. 188 ± 10 b·min; p = 0.90), nor VT (72.7 ± 5.7% vs. 73.8 ± 5.4%) were significantly different on the NMT vs. the MT. However, significant differences were identified between NMT and MT tests for time to exhaustion (9:55 ± 1:49 vs. 12:05 ± 2:48; p < 0.01) and peak speed (8.0 ± 0.9 mph vs. 9.2 ± 1.4 mph; p < 0.01). Thus, although peak values obtained were similar between testing sessions on the NMT and MT, the majority of submaximal data were significantly different between trials. These differences are important when designing exercise prescriptions using submaximal values from NMT testing that may be inappropriately high or low at corresponding intensities during training.
The purpose of the present study was to determine whether ultrasound is a useful tool to measure the venous characteristics of the lower extremity during a standard venous collecting cuff deflation protocol. To accomplish this, lower extremity pressure-cross-sectional area (CSA) and pressure-volume relationships were measured in eight (25 +/- 1 yr) supine subjects. Popliteal vein CSA was assessed by using high-resolution ultrasound, while calf volume changes were simultaneously assessed by using venous occlusion plethysmography (VOP). Pressure-CSA and pressure-volume relationships were assessed at baseline, during the cold pressor (CP) test, and following sublingual nitroglycerin (NTG) administration. Relationships were modeled with a quadratic regression equation, and beta(1) and beta(2) were used as indexes of venous compliance. Popliteal vein regression parameters beta(1) (8.485 +/- 2.616 vs. 7.638 +/- 2.664, baseline vs. CP; 8.485 +/- 2.616 vs. 7.734 +/- 3.076, baseline vs. NTG; both P > 0.05) and beta(2) (-0.0841 +/- 0.0241 vs. -0.0793 +/- 0.0242, baseline vs. CP; -0.0841 +/- 0.0241 vs. -0.0771 +/- 0.0280, baseline vs. NTG; both P > 0.05) were not affected by CP or NTG. Similarly, calf regression parameters beta(1) and beta(2), obtained with VOP, were not altered during either trial. Intraclass correlations for venous compliance assessed with ultrasound and VOP were 0.92 and 0.97, respectively, indicating acceptable reproducibility. These data suggest that ultrasound is a functional and reproducible tool to assess the venous characteristics of the lower extremity, in addition to VOP. Additionally, popliteal vein and calf compliance were not affected by the CP test or NTG.
To date, biomechanical analyses of soccer kicking have focused predominantly on lower-extremity motions, with little emphasis on the trunk and upper body. The purpose of this study was to evaluate differences in trunk axial kinematics between novice (n = 10) and skilled (n = 10) participants, as well as to establish the relationship of trunk axial motion and sagittal plane thigh rotation to poststrike ball velocity. Three-dimensional body segmental motion data were captured using high-resolution motion analysis (120 Hz) while each participant completed 5 maximal instep soccer-style kicks. The results demonstrate that skilled participants use 53% greater axial trunk range of motion compared with novice participants (P < .01), as well as 62% greater peak trunk rotation velocity (P < .01). The results also show a moderate, positive correlation of peak trunk rotation velocity with poststrike ball velocity (r = .57; P < .01), and peak hip flexion velocity with poststrike ball velocity (r = .63; P < .01). The current study highlights the potential for trunk rotation-specific training to improve maximum instep kick velocity in developing soccer athletes.
This study aimed to evaluate changes in pre- to postseason power output, fatigue, and recovery during a repeated sprint test. Twenty National Collegiate Athletic Association Division I men's hockey athletes performed identical sessions of repeated sprint work pre- and postseason. The repeated sprint test consisted of 5 sets of 45 seconds of repeated sprint work with 90 seconds of rest in between each series of sprints. Power output (W), decrement, and recovery scores (RECs) were determined using raw data from a nonmotorized treadmill. Ratings of perceived exertion were recorded after, and perceived readiness (PR) recorded before, each series of sprints. Mean power was significantly higher in preseason vs. postseason performance during sprint 1 (760.6 vs. 691.3 W; p = 0.03), sprint 2 (719.9 vs 657.0 W; p = 0.05), sprint 4 (648.4 vs 588.9 W; p = 0.04), and sprint 5 (656.6 vs. 586.8 W, p = 0.04). Ratings of perceived exertion were significantly higher during sprints 3, 4, and 5 postseason with PR significantly higher (indicating less readiness) before sprints 3 and 4. There were no significant differences in REC or decrement score. Overall, athletes were unable to maintain power during subsequent repeated sprint work during postseason. The degree to which the athletes fatigued and recovered between sprints did not change between pre- and postseason testing, however, athletes exhibit increased perceptual strain during the repeated sprint work. These data indicate meaningful performance and perceptual differences throughout the competitive season in collegiate-level hockey players.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.