Whole genome sequencing on next-generation instruments provides an unbiased way to identify the organisms present in complex metagenomic samples. However, the time-to-result can be protracted because of fixed-time sequencing runs and cumbersome bioinformatics workflows. This limits the utility of the approach in settings where rapid species identification is crucial, such as in the quality control of food-chain components, or in during an outbreak of an infectious disease. Here we present What′s in my Pot? (WIMP), a laboratory and analysis workflow in which, starting with an unprocessed sample, sequence data is generated and bacteria, viruses and fungi present in the sample are classified to subspecies and strain level in a quantitative manner, without prior knowledge of the sample composition, in approximately 3.5 hours. This workflow relies on the combination of Oxford Nanopore Technologies′ MinION ™ sensing device with a real-time species identification bioinformatics application.
No abstract
No abstract
The frequency response of a pressure transducer is influenced by the natural resonance of the sensor structure, the spatial resolution of the sensor due to its diaphragm size, the sensor packaging, signal conditioning and mounting at the measurement location. The resonance of the sensor and aerodynamically-driven resonances related to the sensor packaging and/or mounting, specifically, can distort dynamic pressure measurements within the range of greatest interest (10Hz–20kHz), typically resulting in erroneous amplification. Historically, correcting for such errors within the frequency response of a pressure transducer or measurement system has been challenging, because such errors are hard to quantify with unknown resonant frequencies and damping factors (quality factors). However, with the ability to fully characterize resonant frequencies that lie within 10Hz–50kHz using a previously demonstrated dynamic pressure characterization methodology, it is possible to apply electrical filtering to substantially extend the flat (0±2dB) frequency response of a transducer before any digital signal conversion. In this work, we present a real-time frequency response compensation scheme that uses electrical filtering to correct for aerodynamically driven packaging or mounting related resonances while at the same time preventing signal distortion caused by the sensor resonances. The compensation extends the useable, flat amplitude bandwidth of the transducer while also correcting the phase response to maintain constant time delay over the extended bandwidth. This real-time frequency response correction scheme can be similarly used to compensate for chip resonances, which can limit the frequency response in applications such as shock and blast testing. A theoretical model of the frequency response correction methodology is presented. We additionally present temperature dependent experimental results that compare the frequency response with and without the correction scheme. These results demonstrate that the usable bandwidth of pressure transducers can be increased when real time, analog frequency response correction is applied. This work shows that if the frequency response of a transducer is well characterized, advanced signal conditioning can be implemented to substantially extend the flat bandwidth of the transducer without changes to the sensor, packaging or mounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.