Laminar shear stress activates NADPH oxidase in vascular endothelial cells (ECs), and the generated superoxide radicals (O2–·) are known to be involved in intercellular adhesion molecule (ICAM)-1 expression. In this study, the role of a glycosphingolipid (GSL), lactosylceramide (LacCer), as a second messenger in the shear-induced O2–· generation and ICAM-1 expression was examined. It is known that glucosylceramide synthase (GlcT-1) catalyzes the synthesis of glucosylceramide (GlcCer) from ceramide, and subsequently lactosylceramide synthase (GalT-2) synthesizes LacCer from GlcCer. We observed that exposing cultured human umbilical vein ECs (HUVECs) to fluid shear stress (20 dyn/cm2 for 30 min) activated GalT-2. Shear stress also increased EC O2–· generation, that peaked at 30 min, and surface ICAM-1 protein expression at 6 h post-shear. EC preincubation with the antioxidant N-acetylcysteine (NAC; 20 mM for 2 h) completely abolished the shear-induced O2–· production and significantly inhibited ICAM-1 expression. EC preincubation with D-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of the GSL glycosyltransferases GlcT-1 and GalT-2, abrogated the shear-induced activation of GalT-2. D-PDMP also abolished the shear-induced O2–· production and ICAM-1 expression. We conclude that laminar shear stress activates GalT-2 to produce LacCer. In turn, LacCer activates NADPH oxidase, which produces O2–·, and O2–· mediates the shear-induced increase in ICAM-1 expression. Thus, LacCer may play an important role in hemodynamic force-induced pathological conditions, such as atherosclerosis and ischemia/reperfusion injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.