Moraxella catarrhalis is a gram-negative bacterium that is mainly responsible for respiratory tract infections. In this study we report a novel outer membrane protein (OMP), designated M35, with a molecular mass of 36.1 kDa. This protein was structurally homologous to classic gram-negative porins, such as OMP C from Escherichia coli and OMP K36 from Klebsiella pneumoniae, with a predicted structure of 8 surface loops and 16 antiparallel -sheets. The DNA sequences of the genes from 18 diverse clinical isolates showed that the gene was highly conserved (99.6 to 100% of nucleotides), with only one isolate (ID78LN266) having base variations that resulted in amino acid substitutions. Electrophoresis and analysis of recognition of the protein using mouse anti-M35 sera showed that M35 was expressed on the bacterial surface and constitutively expressed across M. catarrhalis isolates, with only ID78LN266 showing poor antibody recognition. Our results showed that the single amino acid mutation in loop 3 significantly affected antibody recognition, indicating that loop 3 appeared to contain an immunodominant B-cell epitope. The antibody specificity to loop 3 may be a potential mechanism for evasion of host immune responses targeted to M35, since loop 3 should theoretically orientate into the porin channel. Thus, M35 is a highly conserved, surface-expressed protein that is of significance for its potential functional role as an M. catarrhalis porin and is of interest as a vaccine candidate.Moraxella catarrhalis, a gram-negative bacterium, is predominantly responsible for respiratory tract infections, such as otitis media, sinusitis, and exacerbations of chronic obstructive pulmonary disease (17,24,30). On rare occasions, it can also cause more serious diseases, such as meningitis and septicemia, although these occur mainly in immunocompromised populations and neonates (7, 23). M. catarrhalis pathogenesis and virulence factors are not well understood. For a long time, limited research was undertaken on this bacterium, since it was considered a normal commensal. The acceptance of M. catarrhalis as a pathogen, and its remarkably rapid development of resistance to -lactam antibiotics (12,14), have stimulated research into the pathogenesis of infection and characterization of the bacterium.The majority of research into M. catarrhalis has been focused on the identification and characterization of outer membrane proteins (OMP), with a view to assessing their suitability as vaccine antigens. An ideal vaccine candidate should be highly conserved so that it can elicit an immune response that protects against all strains of the bacterium. A number of potential vaccine candidates have been identified so far, and one particular characteristic of these is conservation across strains. Two proteins that demonstrate potential as vaccine antigens, OMP E and OMP CD, appear to be well conserved (24-26) and demonstrate some similarity with porins from Escherichia coli and Pseudomonas species, respectively (24). This study reports the characte...
This study has investigated the feasibility of a combination of recombinant surface layer (S-layer) proteins and empty bacterial cell envelopes (ghosts) to deliver candidate antigens for a vaccine against nontypeable Haemophilus influenzae (NTHi) infections. The S-layer gene sbsA from Bacillus stearothermophilus PV72 was used for the construction of fusion proteins. Fusion of maltose binding protein (MBP) to the N-terminus of SbsA allowed expression of the S-layer in the periplasm of Escherichia coli. The outer membrane protein (Omp) 26 of NTHi was inserted into the N-terminal and C-terminal regions of SbsA. The presence of the fused antigen Omp26 was demonstrated by Western blot experiments using anti-Omp26 antisera. Electron microscopy showed that the recombinant SbsA maintained the ability to self-assemble into sheet-like and cylindrical structures. Recombinant E. coli cell envelopes (ghosts) were produced by the expression of SbsA/Omp26 fusion proteins prior to gene E-mediated lysis. Intraperitoneal immunization with these recombinant bacterial ghosts induced an Omp26-specific antibody response in BALB/c mice. These results demonstrate that the NTHi antigen, Omp26, was expressed in the S-layer self-assembly product and this construct was immunogenic for Omp26 when administered to mice in bacterial cell envelopes.
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Bordetella pertussis is the causative agent of whooping cough. Traditional vaccines against this disease are inherently reactogenic, thus research is currently focussed on the production of less reactive, acellular vaccines. Expression of candidate antigens for these vaccines in Escherichia coli would be preferable, however, several B. pertussis antigens undergo incorrect post-translational processing in E. coli. The leader peptidase gene (lep) of B. pertussis encodes a protein of 294 amino acid residues that shares homology with other prokaryote leader peptidase I sequences. Hydrophilicity analysis based on the predicted amino acid sequence has demonstrated a similar membrane topology to that of E. coli and Salmonella typhimurium leader peptidase I. Co-expression of the B. pertussis lep gene in E. coli strain TOPP2 expressing the pertussis toxin S1 subunit was found to markedly increase the expression and post-translational processing of the S1 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.