In this study, we have tested the hypothesis that the expression and secretion of galectins are driven through mechanisms globally impacted by homeostatic regulation involving the post-translational modification of intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc). We showed that neutrophilic differentiation of HL-60 cells induced by all-trans retinoic acid (ATRA) and 6-diazo-5-oxo-L-norleucine (DON) was associated with a significant drop of cellular O-GlcNAc levels in serum-contained and serum-free cell culture media. Galectin gene and protein expression profiles in HL-60 cells were specifically modified by ATRA and by inhibitors of O-GlcNAc cycle enzymes, however overall trends for each drug were similar between cells growing in the presence or absence of serum except for LGALS9 and LGALS12. The secretion of four galectins (-1, -3, -9, and -10) by HL-60 cells in a serum-free medium was stimulated by O-GlcNAc-reducing ATRA and DON while O-GlcNAc-elevating thiamet G (O-GlcNAcase inhibitor) failed to change the basal levels of extracellular galectins. Taken together, these results demonstrate that O-GlcNAc homeostasis is essential not only for regulation of galectin expression in cells but also for the secretion of multiple members of this protein family, which can be an important novel aspect of unconventional secretion mechanisms.
The regulation of proteins through the addition and removal of O-linked β-N-acetylglucosamine (O-GlcNAc) plays a role in many signaling events, specifically in stem cell pluripotency and the regulation of differentiation. However, these post-translational modifications have not been explored in extraembryonic endoderm (XEN) differentiation. Of the plethora of proteins regulated through O-GlcNAc, we explored galectin-3 as a candidate protein known to have various intracellular and extracellular functions. Based on other studies, we predicted a reduction in global O-GlcNAcylation levels and a distinct galectin expression profile in XEN cells relative to embryonic stem (ES) cells. By conducting dot blot analysis, XEN cells had decreased levels of global O-GlcNAc than ES cells, which reflected a disbalance in the expression of genes encoding O-GlcNAc cycle enzymes. Immunoassays (Western blot and ELISA) revealed that although XEN cells (low O-GlcNAc) had lower concentrations of both intracellular and extracellular galectin-3 than ES cells (high O-GlcNAc), the relative secretion of galectin-3 was significantly increased by XEN cells. Inducing ES cells toward XEN in the presence of an O-GlcNAcase inhibitor was not sufficient to inhibit XEN differentiation. However, global O-GlcNAcylation was found to decrease in differentiated cells and the extracellular localization of galectin-3 accompanies these changes. Inhibiting global O-GlcNAcylation status does not, however, impact pluripotency and the ability of ES cells to differentiate to the XEN lineage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.