AimsImpaired myocardial sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) activity is a hallmark of failing hearts, and SERCA2a gene therapy improves cardiac function in animals and patients with heart failure (HF). Deregulation of microRNAs has been demonstrated in HF pathophysiology. We studied the effects of therapeutic AAV9.SERCA2a gene therapy on cardiac miRNome expression and focused on regulation, expression, and function of miR-1 in reverse remodelled failing hearts.Methods and resultsWe studied a chronic post-myocardial infarction HF model treated with AAV9.SERCA2a gene therapy. Heart failure resulted in a strong deregulation of the cardiac miRNome. miR-1 expression was decreased in failing hearts, but normalized in reverse remodelled hearts after AAV9.SERCA2a gene delivery. Increased Akt activation in cultured cardiomyocytes led to phosphorylation of FoxO3A and subsequent exclusion from the nucleus, resulting in miR-1 gene silencing. In vitro SERCA2a expression also rescued miR-1 in failing cardiomyocytes, whereas SERCA2a inhibition reduced miR-1 levels. In vivo, Akt and FoxO3A were highly phosphorylated in failing hearts, but reversed to normal by AAV9.SERCA2a, leading to cardiac miR-1 restoration. Likewise, enhanced sodium–calcium exchanger 1 (NCX1) expression during HF was normalized by SERCA2a gene therapy. Validation experiments identified NCX1 as a novel functional miR-1 target.ConclusionSERCA2a gene therapy of failing hearts restores miR-1 expression by an Akt/FoxO3A-dependent pathway, which is associated with normalized NCX1 expression and improved cardiac function.
The use of anthracyclines such as doxorubicin (DOX) has improved outcome in cancer patients, yet associated risks of cardiomyopathy have limited their clinical application. DOX-associated cardiotoxicity is frequently irreversible and typically progresses to heart failure (HF) but our understanding of molecular mechanisms underlying this and essential for development of cardioprotective strategies remains largely obscure. As microRNAs (miRNAs) have been shown to play potent regulatory roles in both cardiovascular disease and cancer, we investigated miRNA changes in DOX-induced HF and the alteration of cellular processes downstream. Myocardial miRNA profiling was performed after DOX-induced injury, either via acute application to isolated cardiomyocytes or via chronic exposure in vivo, and compared with miRNA profiles from remodeled hearts following myocardial infarction. The miR-30 family was downregulated in all three models. We describe here that miR-30 act regulating the β-adrenergic pathway, where preferential β1- and β2-adrenoceptor (β1AR and β2AR) direct inhibition is combined with Giα-2 targeting for fine-tuning. Importantly, we show that miR-30 also target the pro-apoptotic gene BNIP3L/NIX. In aggregate, we demonstrate that high miR-30 levels are protective against DOX toxicity and correlate this in turn with lower reactive oxygen species generation. In addition, we identify GATA-6 as a mediator of DOX-associated reductions in miR-30 expression. In conclusion, we describe that DOX causes acute and sustained miR-30 downregulation in cardiomyocytes via GATA-6. miR-30 overexpression protects cardiac cells from DOX-induced apoptosis, and its maintenance represents a potential cardioprotective and anti-tumorigenic strategy for anthracyclines.
AimsThere are few non-invasive techniques to predict and monitor patients' responses to left ventricular assist device (LVAD) therapy. MicroRNAs (miRs) are small non-coding RNAs with intricate roles in cardiovascular disease. They are stable in the circulation, readily quantified, and may be useful as new biomarkers. This study sought to identify candidate miR biomarkers for further investigation.Methods and resultsWe studied 53 plasma and 20 myocardial samples from 19 patients who underwent HeartMate II LVAD implantation, and used a screening microarray to analyse the change in expression of 1113 miRs after 6 months LVAD support. Twelve miRs showed significant variation and underwent validation, yielding miR-1202 and miR-483-3p as candidate biomarkers. In the test cohort, circulating miR-483-3p showed early and sustained up-regulation with LVAD support, with median (interquartile range) fold changes from baseline of 2.17 (1.43–2.62; P = 0.011), 2.27 (1.12–2.42; P = 0.036), 1.87 (1.64–4.36; P = 0.028), and 2.82 (0.70–10.62; P = 0.249) at 3, 6, 9, and 12 months, respectively, whilst baseline plasma miR-1202 identified good vs. poor LVAD responders [absolute expression 1.296 (1.293–1.306) vs. 1.311 (1.310–1.318) arbitrary units; P = 0.004]. Both miRs are enriched in ventricular myocardium, suggesting the heart as the possible source of the plasma fraction.ConclusionsThis is the first report of circulating miR biomarkers in LVAD patients. We demonstrate the feasibility of this approach, report the potential for miR-483-3p and miR-1202, respectively, to monitor and predict response to LVAD therapy, and propose further work to study these hypotheses and elucidate roles for miR-483-3p and miR-1202 in clinical practice and in underlying biological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.