Background: Magnetic nanoparticles (MNPs) generate heat when exposed to an alternating magnetic field. Consequently, MNPs are used for magnetic fluid hyperthermia (MFH) for cancer treatment, and have been shown to increase the efficacy of chemotherapy and/or radiation treatment in clinical trials. A downfall of current MFH treatment is the inability to deliver sufficient heat to the tumor due to: insufficient amounts of MNPs, unequal distribution of MNPs throughout the tumor, or heat loss to the surrounding environment. Objective: In this study, the objective was to identify MNPs with high heating efficiencies quantified by their specific absorption rate (SAR). Methods: A panel of 31 commercially available MNPs were evaluated for SAR in two different AMFs. Additionally, particle properties including iron content, hydrodynamic diameter, core diameter, magnetic diameter, magnetically dead layer thickness, and saturation mass magnetization were investigated. Results: High SAR MNPs were identified. For SAR calculations, the initial slope, corrected slope, and Box-Lucas methods were used and validated using a graphical residual analysis, and the Box-Lucas method was shown to be the most accurate. Other particle properties were identified and examined for correlations with SAR values. Positive correlations of particle properties with SAR were found, including a strong correlation for the magnetically dead layer thickness. Conclusions: This work identified high SAR MNPs for hyperthermia, and provides insight into properties which correlate with SAR which will be valuable for synthesis of next-generation MNPs. SAR calculation methods must be standardized, and this work provides an in-depth analysis of common calculation methods.
Cancer vaccines initiate antitumor responses in a subset of patients, but the lack of clinically meaningful biomarkers to predict treatment response limits their development. Here, we design multifunctional RNA-loaded magnetic liposomes to initiate potent antitumor immunity and function as an early biomarker of treatment response. These particles activate dendritic cells (DCs) more effectively than electroporation, leading to superior inhibition of tumor growth in treatment models. Inclusion of iron oxide enhances DC transfection and enables tracking of DC migration with magnetic resonance imaging (MRI). We show that T 2*-weighted MRI intensity in lymph nodes is a strong correlation of DC trafficking and is an early predictor of antitumor response. In preclinical tumor models, MRI-predicted “responders” identified 2 days after vaccination had significantly smaller tumors 2–5 weeks after treatment and lived 73% longer than MRI-predicted “nonresponders”. These studies therefore provide a simple, scalable nanoparticle formulation to generate robust antitumor immune responses and predict individual treatment outcome with MRI.
Controlling receptor-mediated processes in cells is paramount in many research areas. The activity of small molecules and growth factors is difficult to control and can lead to off-target effects through the activation of nonspecific receptors as well as binding affinity to nonspecific cell types. In this study, we report the development of a molecular trigger in the form of a divalent nucleic acid aptamer assembly toward vascular endothelial growth factor receptor-2 (VEGFR2). The assembly binds to VEGFR2 and functions as a receptor agonist with targeted receptor binding, promoting receptor phosphorylation, activation of the downstream Akt pathway, upregulation of endothelial nitric oxide synthase, and endothelial cell capillary tube formation. The agonist action we report makes this aptamer construct a promising strategy to control VEGFR2-mediated cell signaling.
The development of platforms for the controlled release of therapeutic molecules remains a crucial research focus, as controlled release reduces the frequency of administration, minimizes side effects and improves compliance. However, biological conditions and diseases with a progression that exhibits strong temporal dependence, or those that can result in the evolution of tolerance to the therapeutic during continuous exposure, require the development of sophisticated release systems tailored to the needs to the individual and the disease. Thus, there has been emphasis on the development of platforms with remotely controlled release mechanisms. Specifically, magnetically triggered release utilizes magnetic nanoparticles as the remote control modality. Many reviews discuss the magnetically triggered release of small molecule drugs, however, the release of biomacromolecules has not been reviewed. This review examines the limited work on the magnetically triggered release of biomacromolecules and the challenges associated with their delivery. Important material parameters that have been used in this pursuit are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.