Deep neural networks (DNNs) have had many successes, but they suffer from two major issues: (1) a vulnerability to adversarial examples and (2) a tendency to elude human interpretation. Interestingly, recent empirical and theoretical evidence suggests that these two seemingly disparate issues are actually connected. In particular, robust models tend to provide more interpretable gradients than non-robust models. However, whether this relationship works in the opposite direction remains obscure. With this paper, we seek empirical answers to the following question: can models acquire adversarial robustness when they are trained to have interpretable gradients? We introduce a theoretically inspired technique called Interpretation Regularization (IR), which encourages a model's gradients to (1) match the direction of interpretable target salience maps and (2) have small magnitude. To assess model performance and tease apart factors that contribute to adversarial robustness, we conduct extensive experiments on MNIST and CIFAR-10 with both 2 and ∞ attacks. We demonstrate that training the networks to have interpretable gradients improves their robustness to adversarial perturbations. Applying the network interpretation technique SmoothGrad [59] yields additional performance gains, especially in cross-norm attacks and under heavy perturbations. The results indicate that the interpretability of the model gradients is a crucial factor for adversarial robustness. Code for the experiments can be found at https ://githu b.com/a1noa ck/inter p_regul ariza tion.
Adversarial attacks curated against NLP models are increasingly becoming practical threats. Although various methods have been developed to detect adversarial attacks, securing learning-based NLP systems in practice would require more than identifying and evading perturbed instances. To address these issues, we propose a new set of adversary identification tasks, Attacker Attribute Classification via Textual Analysis (AACTA), that attempts to obtain more detailed information about the attackers from adversarial texts. Specifically, given a piece of adversarial text, we hope to accomplish tasks such as localizing perturbed tokens, identifying the attacker's access level to the target model, determining the evasion mechanism imposed, and specifying the perturbation type employed by the attacking algorithm. Our contributions are as follows: we formalize the task of classifying attacker attributes, and create a benchmark on various target models from sentiment classification and abuse detection domains. We show that signals from BERT models and target models can be used to train classifiers that reveal the properties of the attacking algorithms. We demonstrate that adversarial attacks leave interpretable traces in the feature space of both of pre-trained language models and target models, making AACTA a promising direction towards more trustworthy NLP systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.