Based on the FMEA performed in this work, the use of surface imaging for monitoring intrafraction position in Linac-based stereotactic radiosurgery (SRS) did not greatly increase the risk of the Linac-based SRS process. In some cases, SIG helped to reduce the risk of Linac-based RS. The FMEA was augmented by the use of FTA since it divided the failure modes into their fundamental components, which simplified the task of developing mitigation strategies.
AlignRT is a surface imaging system that has been utilized for localizing and tracking patient position during radiotherapy. AlignRT has two calibration procedures that can set the system's isocenter called “Monthly Calibration” (MC) and “Isocentre Calibration” (IC). The MC utilizes a calibration plate. In addition to the calibration plate, the IC utilizes a cubic phantom that is imaged with the linac treatment beam to aid in aligning the AlignRT and treatment‐beam isocenters. This work evaluated the effects of misaligning the calibration plate during the calibration process. The plate was intentionally shifted away from isocenter ±3.0 mm in the longitudinal and lateral directions and ±1.0 mm in the longitudinal, lateral, and vertical directions. A mock stereotactic radiosurgery (SRS) treatment was used to evaluate the effects of the miscalibrations. An anthropomorphic head phantom was placed in an SRS treatment position and monitored with the AlignRT system. The AlignRT‐indicated offsets were recorded at 270°, 315°, 0°, 45°, and 90° couch angles for each intentional misalignment of the calibration plate during the MC. The IC was also performed after each miscalibration, and the measurements were repeated and compared to the previous results. With intentional longitudinal and lateral shifts of ±3.0 mm and ±1.0 mm of the calibration plate, the average indicated offsets at couch rotations of ±90° were 4.3 mm and 1.6 mm, respectively. This was in agreement with the theoretical offset of √2*(shift‐of‐the‐calibration plate). Since vertical shifts were along the rotation axis of the couch, these shifts had little effect on the offsets with changing couch angle. When the IC was applied, the indicated offsets were all within 0.5 mm for all couch angles for each of the miscalibrations. These offsets were in agreement with the known magnitude of couch walkout. The IC method effectively removes the potential miscalibration artifacts of the MC method due to misalignments of the calibration plate.
Brass mesh bolus has been shown to be an acceptable substitute for tissue‐equivalent bolus to increase superficial dose for chest wall tangent photon radiotherapy. This work investigated the increase in surface dose, the change in the dose at depth, and the safety implications of higher energy photon beams when using brass mesh bolus for postmastectomy chest wall radiotherapy. A photon tangent plan was delivered to a thorax phantom, and the superficial dose ranged from 40%–72% of prescription dose with no bolus. The surface dose increased to 75%–110% of prescription dose with brass mesh bolus and 85%–109% of prescription dose with tissue‐equivalent bolus. It was also found that the dose at depth when using brass mesh bolus is comparable to that measured with no bolus for en face and oblique incidence. Monte Carlo calculations were used to assess the photoneutron production from brass mesh bolus used with 15 MV and 24 MV photon beams. The effective dose from photoneutrons was approximated and found to be relatively small, yet not negligible. Activation products generated by these photoneutrons, the surface dose rate due to the activation products, and the half‐life of the activation products were also considered in this work. The authors conclude that brass mesh bolus is a reasonable alternative to tissue‐equivalent bolus, and it may be used with high‐energy beam; but one should be aware of the potential increased effective dose to staff and patients due to the activation products produced by photoneutrons.PACS number(s): 87.53.Kn, 87.55.K
To apply failure mode and effect analysis (FMEA) to generate an effective and efficient initial physics plan checklist. Methods: A team of physicists, dosimetrists, and therapists was setup to reconstruct the workflow processes involved in the generation of a treatment plan beginning from simulation. The team then identified possible failure modes in each of the processes. For each failure mode, the severity (S), frequency of occurrence (O), and the probability of detection (D) was assigned a value and the risk priority number (RPN) was calculated. The values assigned were based on TG 100. Prior to assigning a value, the team discussed the values in the scoring system to minimize randomness in scoring. A local database of errors was used to help guide the scoring of frequency. Results: Twenty-seven process steps and 50 possible failure modes were identified starting from simulation to the final approved plan ready for treatment at the machine. Any failure mode that scored an average RPN value of 20 or greater was deemed "eligible" to be placed on the second checklist. In addition, any failure mode with a severity score value of 4 or greater was also considered for inclusion in the checklist. As a by-product of this procedure, safety improvement methods such as automation and standardization of certain processes (e.g., dose constraint checking, check tools), removal of manual transcription of treatment-related information as well as staff education were implemented, although this was not the team's original objective. Prior to the implementation of the new FMEA-based checklist, an in-service for all the second checkers was organized to ensure further standardization of the process. Conclusion: The FMEA proved to be a valuable tool for identifying vulnerabilities in our workflow and processes in generating a treatment plan and subsequently a new, more effective initial plan checklist was created.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.