The charging process of water droplets in different electrification systems using empirical and numerical analysis is described. A simplified model based on capacitance distribution is proposed. The results of the experimental studies and numerical calculations enable comparison of the induction and conduction charging methods in terms of the droplet charging level, described by the Q/m parameter. Research findings indicate that the conduction method in a 3-electrode system is the most effective among all the considered methods. It has been also shown that the application of a 2-electrode system under certain conditions provides greater Q/m parameter values in comparison to the system with three electrodes using the induction method. The research results can be used to develop charging systems (e.g., nozzles) that produce streams with electrically charged liquid particles.
The aim of the research was to set up a simplified analytical fabric-grounded object model for estimation of the energy stored in the electric field occurring in the space surrounding a charged fabric. A standard spherical electrode was used as the grounded object. Synthetic fabric with regularly spread conductive yarns (in the form of a grid with regular cells) was used as a sample. The model allowed to combine the energy stored in the space of the cell with the geometry of the fabric-object system and the surface charge density. The model led to a power type relation between the energy W and the cell, with a diameter of a, in the form W = K∙ an, n ≈ 3. These results were verified by those obtained from numerical modeling using the COMSOL Multiphysics program. It was found that for a cell with a diameter of 10 to 50 mm, the difference in results was lower than 38%. Based on the results obtained, it can be stated that the model proposed can be used for the design of fabrics (used in ESD protection) with the maximum acceptable stored energy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.