Orphaned oil and gas wells are abandoned wells for which the cost of environmental impacts usually falls on governments and the general public. Government agencies responsible for well plugging often face funding shortfalls and many orphaned wells remain unplugged. To address this and support the oil and natural gas industry, federal governments are already spending, or considering spending, billions of dollars to plug orphaned oil and gas wells. Here, we analyze oil and gas data for the United States and Canada and identify policy recommendations that can best address environmental impacts of abandoned and orphaned wells. At least 116,245 wells across 32 states and four Canadian provinces/territories are operated by companies filing for bankruptcy in the first half of 2020, which may be an indication that many wells will be orphaned in the near future. Moreover, there are 4,700,000 historic and active oil and gas wells in the United States and another 790,000 in Canada. Of these, 2,000,000 and 310,000 wells are active in the United States and Canada, respectively. Thus, three of five wells ever drilled in the United States are currently inactive (2,700,000 wells), but only one in three are plugged (1,500,000 wells). Plugging involves isolating zones containing oil, gas, and water and is the main strategy for well abandonment. If the orphaned well stimulus funding comes through, tens of thousands of wells will be plugged within a few years. Well plugging at this scale far exceeds current rates of plugging, and it is important that we work to ensure long-term environmental benefits of well abandonment to water, air, climate, ecosystems, and human health. Minimizing environmental impacts of the millions of abandoned and orphaned wells in the United States, Canada, and abroad will allow for an economically beneficial and environmentally safe transition to a carbon-neutral economy.
Orphaned oil and gas wells are unplugged nonproducing wells with no solvent owner of record to plug and mitigate them, such that the responsibility often falls on government agencies and the general public. Unplugged wells pose risks to the environment, climate, and human health. To develop a national framework to quantify the environmental benefits of plugging and optimize mitigation, we analyze oil and gas well data from state agencies across the United States to estimate the number of documented orphaned wells over time and evaluate their attributes. We find at least 81,857 documented orphaned wells as of September 2021 and 123,318 as of April 2022, representing 2% and 3%, respectively, of all estimated abandoned wells in the United States. We identify at least 20,286 potentially documented orphaned wells as of September 2021 (0.5% of all estimated abandoned wells in the country), of which 8% became documented orphaned wells as of April 2022. We estimate annual methane emissions to average 0.016 ± 0.001 MMt of CH 4 for the 123,318 documented orphaned wells as of April 2022, corresponding to 5−6% of the total methane emissions estimated by the U.S. EPA for all abandoned wells. Although well type (i.e., oil vs gas) is generally available (83% of the 81,857 documented orphaned wells as of September 2021), only 49% and 16% of the wells have information on depth and last production date, respectively. Overall, documented orphaned wells and their attributes, including location, well type, depth, and last production date, require additional characterization and studies to constrain the uncertainties. Nevertheless, our identification and analysis of documented orphaned wells represent the first steps toward characterizing the full set of wells eligible to be plugged and remediated with the federal funding available in the U.S. via the Infrastructure Investment and Jobs Act. Our results can also be useful for the management of the hundreds of thousands, potentially a million, undocumented orphaned wells likely to exist across the nation.
Hundreds of thousands of documented and undocumented orphaned oil and gas wells exist in the United States (U.S.). These wells have the potential to contaminate water supplies, degrade ecosystems, and emit methane and other air pollutants. Thus, orphaned wells present risks to climate stability and to environmental and human health, which can be reduced by plugging. To quantify environmental risks and opportunities of well plugging at the national level, we analyze data on 81 857 documented orphaned wells across the U.S. We find that > 4.6 million people live within 1 km of a documented orphaned well. 35% of the documented orphaned wells are located within 1 km of a domestic groundwater well, yet only 8% of the wells have groundwater quality data within a 1 km radius. Methane emissions from the documented orphaned wells represent approximately 3%–6% of total U.S. methane emissions from abandoned oil and gas wells, but this estimate is based on measurements at < 0.03% of U.S. abandoned wells. 91% of the documented orphaned wells overlie formations favorable for geologic storage of carbon dioxide and hydrogen, meaning that orphaned well plugging can reduce leakage risks from future storage projects. Finally, we estimate plugging costs for documented orphaned wells to exceed the $4.7 billion federal funding by 30%–80%, emphasizing the importance of prioritizing federal spending on wells with large remediation benefits. Overall, environmental monitoring data are not extensive enough to quantify risks, especially those related to air and water quality and human health. Plugging orphaned wells can provide opportunities for geologic storage of carbon dioxide and hydrogen and geothermal energy development, thereby facilitating efforts to transition to net-zero energy systems. Our analysis on environmental risks and opportunities of orphaned wells provides a framework that can be used to manage the millions of documented and undocumented orphaned wells in the U.S. and abroad.
This paper presents the technical and regulatory considerations essential for the environmental integrity of geological carbon sequestration. In this context, environmental integrity is defined as a site experiencing no CO2 leakage into the atmosphere, no groundwater contamination, and no significant earthquakes. At a time when geological sequestration is increasingly recognized as a necessary building block to the carbon-neutral economy, this paper presents a path towards its achievement with environmental integrity. The central pillar of the paper delineates sixteen technical recommendations for ensuring environmental integrity, tracking the lifecycle of a CO2 geologic sequestration project. Within the technical realm, special attention is given to topics beyond a site's lifecycle, such as geology types, and CO2 sequestration via enhanced oil recovery. Lastly the paper discusses the governance factors essential to ensuring a legal and regulatory regime that can support these technical considerations. Though the paper draws extensively from US examples, it is designed for global applicability. These recommendations are rooted in the authors’ combined decades of experience as non-governmental actors in the CO2 sequestration space. Together with a consortium of leading subject matter experts across the United States and Europe, the authors developed the sixteen core recommendations, and used study of regulatory frameworks for geologic sequestration to inform the principles provided. As the funding, scale, and need for carbon capture projects accelerates dramatically, it is essential that industry and regulators are aligned toward ensuring environmental integrity – the industry's social license to operate, and the climate, will depend on it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.