Brain aging is associated with diminished circadian clock output and decreased expression of the core clock proteins, which regulate many aspects of cellular biochemistry and metabolism. The genes encoding clock proteins are expressed throughout the brain, though it is unknown whether these proteins modulate brain homeostasis. We observed that deletion of circadian clock transcriptional activators aryl hydrocarbon receptor nuclear translocator-like (Bmal1) alone, or circadian locomotor output cycles kaput (Clock) in combination with neuronal PAS domain protein 2 (Npas2), induced severe age-dependent astrogliosis in the cortex and hippocampus. Mice lacking the clock gene repressors period circadian clock 1 (Per1) and period circadian clock 2 (Per2) had no observed astrogliosis. Bmal1 deletion caused the degeneration of synaptic terminals and impaired cortical functional connectivity, as well as neuronal oxidative damage and impaired expression of several redox defense genes. Targeted deletion of Bmal1 in neurons and glia caused similar neuropathology, despite the retention of intact circadian behavioral and sleep-wake rhythms. Reduction of Bmal1 expression promoted neuronal death in primary cultures and in mice treated with a chemical inducer of oxidative injury and striatal neurodegeneration. Our findings indicate that BMAL1 in a complex with CLOCK or NPAS2 regulates cerebral redox homeostasis and connects impaired clock gene function to neurodegeneration.
Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models.
The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain.fcPAT | RSFC | mouse brain functional imaging | hyperoxia | hypoxia
Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα −/− mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα −/− mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα −/− microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Reverbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Reverbα −/− mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPSinduced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Reverbα −/− mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.Rev-erbα | circadian | microglia | neuroinflammation C ircadian clocks allow organisms to precisely synchronize internal physiological processes with their external environment. A conserved transcriptional-translational feedback loop known as the core circadian clock controls cycles of protein expression that produce transcriptional and physiologic rhythms. This core circadian clock consists of the transcriptional activators BMAL1 and CLOCK, which drive transcription of their own transcriptional repressors, including CRYPTOCHROME (CRY), PE-RIOD (PER), and REV-ERB proteins (1). The circadian system regulates a variety of critical cellular processes, including aspects of metabolism, inflammation, and redox homeostasis (2). Disruptions of the clock or its associated proteins have been implicated in pathological conditions ranging from cancer to neurodegenerative diseases (2-4). However, the roles of cellular circadian clocks in brain health and neuroinflammation are still poorly understood.Aberrant glial cell activation and neuroinflammation are hallmarks of many neuro...
Brain region-specific deposition of extracellular amyloid plaques principally composed of aggregated amyloid-β (Aβ) peptide is a pathological signature of Alzheimer’s disease (AD). Recent human neuroimaging data suggest that resting-state functional connectivity strength is reduced in patients with AD, cognitively normal elderly harboring elevated amyloid burden, and in advanced aging. Interestingly, there exists a striking spatial correlation between functional connectivity strength in cognitively normal adults and the location of Aβ plaque deposition in AD. However, technical limitations have heretofore precluded examination of the relationship between functional connectivity, Aβ deposition, and normal aging in mouse models. Using a novel functional connectivity optical intrinsic signal (fcOIS) imaging technique, we demonstrate that Aβ deposition is associated with significantly reduced bilateral functional connectivity in multiple brain regions of older APP/PS1 transgenic mice. The amount of Aβ deposition in each brain region was associated with the degree of local, age-related bilateral functional connectivity decline. Normal aging was associated with reduced bilateral functional connectivity specifically in retrosplenial cortex. Furthermore, we found that the magnitude of regional bilateral functional correlation in young APP/PS1 mice prior to Aβ plaque formation was proportional to the amount of region-specific plaque deposition seen later in older APP/PS1 mice. Together, these findings suggest that Aβ deposition and normal aging are associated with region-specific disruption of functional connectivity and that the magnitude of local bilateral functional connectivity predicts regional vulnerability to subsequent Aβ deposition in mouse brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.