Summary
After injury or cytokine stimulation, fibroblasts transdifferentiate into myofibroblasts, contractile cells that secrete extracellular matrix for wound healing and tissue remodeling. Here, a genome-wide screen identified TRPC6, a Ca2+ channel necessary and sufficient for myofibroblast transformation. TRPC6 overexpression fully activated myofibroblast transformation, while fibroblasts lacking Trpc6 were refractory to transforming growth factor-β (TGFβ) and angiotensin II-induced transdifferentiation. Trpc6 gene-deleted mice showed impaired dermal and cardiac wound healing after injury. The pro-fibrotic ligands TGFβ and angiotensin II induced TRPC6 expression through p38 mitogen-activated protein kinase (MAPK) - serum response factor (SRF) signaling via the TRPC6 promoter. Once induced, TRPC6 activates the Ca2+-responsive protein phosphatase calcineurin, which itself induced myofibroblast transdifferentiation. Moreover, inhibition of calcineurin prevented TRPC6-dependent transdifferentiation and dermal wound healing. These results demonstrate an obligate function for TRPC6 and calcineurin in promoting myofibroblast differentiation, suggesting a comprehensive pathway for myofibroblast formation in conjunction with TGFβ, p38 MAPK and SRF.
A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilitating outer membrane permeability of the MPTP. Loss of Bax/Bak reduced outer mitochondrial membrane permeability and conductance without altering inner membrane MPTP function, resulting in resistance to mitochondrial calcium overload and necrotic cell death. Reconstitution with mutants of Bax that cannot oligomerize and form apoptotic pores, but still enhance outer membrane permeability, permitted MPTP-dependent mitochondrial swelling and restored necrotic cell death. Our data predict that the MPTP is an inner membrane regulated process, although in the absence of Bax/Bak the outer membrane resists swelling and prevents organelle rupture to prevent cell death.DOI:
http://dx.doi.org/10.7554/eLife.00772.001
Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally1, somatic deletion in RMCs of the Wnt ligand transporter Wntless2,3 results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF)4-6. These findings indicate that resident myeloid cells can use a non-canonical, Wnt-Flt1 pathway to suppress angiogenic branching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.