Inflammatory breast cancer (IBC) is a unique and deadly disease with unknown drivers. We hypothesized the inflammatory environment contributes to the IBC phenotype. We used an in vitro co-culture system to investigate interactions between normal and polarized macrophages (RAW 264.7 cell line), bone-marrow derived mesenchymal stem cells (MSCs), and IBC cells (SUM 149 and MDA-IBC3). We used an in vivo model that reproduces the IBC phenotype by co-injecting IBC cells with MSCs into the mammary fat pad. Mice were then treated with a macrophage recruitment inhibitor, anti-CSF1. MSC and macrophages grown in co-culture produced higher levels of pro-tumor properties such as enhanced migration and elevated IL-6 secretion. IBC cells co-cultured with educated MSCs also displayed enhanced invasion and mammosphere formation and blocked by anti-IL-6 and statin treatment. The treatment of mice co-injected with IBC cells and MSCs with anti-CSF1 inhibited tumor associated macrophages and inhibited pSTAT3 expression in tumor cells. Anti-CSF1 treated mice also exhibited reduced tumor growth, skin invasion, and local recurrence. Herein we demonstrate reciprocal tumor interactions through IL-6 with cells found in the IBC microenvironment. Our results suggest IL-6 is a mediator of these tumor promoting influences and is important for the IBC induced migration of MSCs.
Our study suggests miR-141 is a regulator of brain metastasis from breast cancer and should be examined as a biomarker and potential target to prevent and treat brain metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.