Milk fat globule-EGF factor 8 (MFG-E8)/lactadherin participates in several cell surface-mediated regulatory events. Although its mRNA is present in the gut, the physiological roles of MFG-E8 in the intestinal mucosa have not been explored. Here we show that MFG-E8 was expressed in intestinal lamina propria macrophages from mice. Using a wound-healing assay, MFG-E8 was shown to promote the migration of intestinal epithelial cells through a PKCε-dependent mechanism. MFG-E8 bound to phosphatidylserine and triggered reorientation of the actin cytoskeleton in intestinal epithelial cells at the wound edge. Depleting MFG-E8 in mice by administration of anti-MFG-E8 antibody or targeted deletion of the MFG-E8 gene resulted in a slowing of enterocyte migration along the crypt-villus axis and focal mucosal injury. Moreover, in septic mice, intestinal MFG-E8 expression was downregulated, which correlated with intestinal injury, interrupted enterocyte migration, and impaired restitution. Treatment with recombinant MFG-E8 restored enterocyte migration, whereas deletion of MFG-E8 impeded mucosal healing in mice with sepsis. These results suggest that a decrease in intestinal MFG-E8 impairs intestinal mucosal repair in sepsis. Together, our data indicate that MFG-E8 plays an important role in the maintenance of intestinal epithelial homeostasis and the promotion of mucosal healing and suggest that recombinant MFG-E8 may be beneficial for the treatment of bowel injuries.
MFG-E8 was initially identified as a principle component of the Milk Fat Globule, a membrane-encased collection of proteins and triglycerides that bud from the apical surface of mammary epithelia during lactation. It has since been independently identified in many species and by many investigators and given a variety of names, including p47, lactadherin, rAGS, PAS6/7, and BA-46. The acronym SED1 was proposed to bring cohesion to this nomenclature based upon it being a Secreted protein that contains two distinct functional domains: an N-terminal domain with two EGF-repeats, the second of which has an integrin-binding RGD motif, and a C-terminal domain with two Discoidin/F5/8C domains that bind to anionic phospholipids and/or extracellular matrices. SED1/MFG-E8 is now known to participate in a wide variety of cellular interactions, including phagocytosis of apoptotic lymphocytes and other apoptotic cells, adhesion between sperm and the egg coat, repair of intestinal mucosa, mammary gland branching morphogenesis, angiogenesis, among others. This article will explore the various roles proposed for SED1/MFG-E8, as well as its provocative therapeutic potential.
The epididymis is a highly convoluted tubule that connects the testis with the vas deferens, and in which mammalian sperm acquire the ability to fertilize eggs. The most proximal portion of the epididymis, or initial segment, secretes numerous factors that are critical for sperm maturation and storage. One such factor is SED1 (also known as MFG-E8) a bi-motif protein composed of two N-terminal EGF domains, the second of which contains an RGD motif, and two C-terminal discoidin domains (also known as F5/8 type C domains). Previous studies have reported that SED1 is secreted into the epididymal lumen, where it coats sperm and later facilitates sperm-egg binding. Herein, we report that SED1-null males also harbor unexpected epididymal pathologies, including detached epithelia and spermatic granulomas. We therefore examined whether SED1 has a tissue-intrinsic role in the epididymis, in addition to its role in sperm-egg adhesion. Improved fixation protocols revealed that SED1 is found in the basolateral domains of epididymal epithelial cells in vivo, and similarly, SED1 is secreted both apically and basally from polarized epididymal cells in vitro. The basolateral distribution of SED1 suggests that it may play a novel role in epididymal cell adhesion. Consistent with this, in vitro assays showed that SED1 supports epididymal cell adhesion via RGD binding to αV integrin receptors on epididymal epithelial cells. Finally, epididymal cells from SED1-null males showed reduced adhesion in vitro, a phenotype that can be rescued with exogenous SED1. These results suggest that SED1 facilitates epididymal cell adhesion, and that its loss leads to breakdown of the epididymal epithelium and consequent development of spermatic granulomas.
SUMMARYSED1/MFG-E8, herein referred to as SED1, is a bimotif adhesive protein with ascribed functions in a range of cell-cell interactions, including sperm-egg binding. In the male reproductive tract, SED1 is secreted by the initial segment of the epididymis, where it coats sperm and subsequently facilitates binding to the egg zona pellucida. We have recently reported that SED1-null epididymides show an unexpected incidence of spermatic granulomas, reflecting breakdown of the epithelium and a consequent autoimmune response against sperm antigens. However, spermatic granulomas are most often manifest in the distal segments of the epididymis, whereas the bulk of SED1 is expressed in the proximal epididymis. In some models, the presence of granulomas in the distal epididymis is associated with an underlying defect in the maintenance of luminal fluid homeostasis. Herein, we report that SED1-null epididymal fluid is both hypo-osmotic and alkaline, relative to wildtype epididymal fluid. Furthermore, the SED1-null epididymal epithelium exhibits various hallmarks of disrupted fluid reabsorption and pH regulation, including altered morphology of clear cells, increased intracellular vesicles, and apical distribution of VATPase. Results indicate that the SED1-null epididymal pathologies are not the secondary consequences of defective testes or efferent ducts or of improper epididymal differentiation, unlike that seen in other epididymal models. The expression and distribution of various ion exchangers, channels, and enzymes that mediate fluid transport and pH regulation are examined in wildtype and SED1-null epididymides, and models to account for how SED1 functions in luminal fluid dynamics are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.