The strategic project of economic development in the Dornogobi Province in Mongolia is dependent on water supply. Thus a comprehensive hydrogeological characterization was focused on the Upper Cretaceous multi-aquifer system north of Sainshand city. A conceptual model was developed to discover the groundwater flow pattern essential to correct the setting of the numerical model of groundwater flow created using MODFLOW to assess the natural recharge of the aquifer. The conceptualization was based on geological and hydrogeological characterization. However, the evaluation of hydrochemistry proved to be the key factor revealing the principal feature of the groundwater flow pattern, which is the presence of preferential flow zones. These zones allow for intensive transfer of relatively fresh Na(Mg,Ca)-HCO 3 -dominated groundwater into discharge areas, where it leaks into the Quaternary aquifer. The numerical model suggested an enormous natural recharge of 22 100 m 3 /d, originating in 64% of the preferential flow zones.
The Rozna Mine is one of the last active uranium mines in Europe. When the mine is closed and flooded, the natural groundwater flow pattern will be partly restored. Re-established groundwater flow system will be associated with an increase of groundwater discharge into draining rivers and streams. Since the groundwater inflows to streams can be contaminated by the mine water, the groundwater drainage characteristic of fractured aquifer should be carefully identified. Several methods of groundwater discharge zones identification were used including morphological analysis, thermometry, and electrical conductivity (EC) measurements. Stream temperatures and EC at more than 700 points in the area covering about 85 km 2 were measured. The measurements were performed during winter period, when stream discharges were low and there was a maximum temperature contrast. There was a frequent presence of preferential discharge zones with resulting anomalous temperatures and electric conductivity values of stream water. The results show evident correlation of discharge zones with surface morphology and geological settings. Just like the aquifer discharge characteristics, the aquifer is strongly heterogeneous. The thermometry supported by measurement of EC proved to be a useful tool for large-scale investigation of groundwater flow and drainage in fractured aquifers.
The regions of South Moravia in Czech Republic and Lower Austria are well-known for their use of thermal mineral waters for balneological purposes. Mineral waters are exploited from a Jurassic aquifer by two about 1.5 km deep wells MUS-3G (Pasohlavky, Czech Republic) and Laa TH Nord 1 (Laa an der Thaya, Austria). This Jurassic aquifer buried below the Neogene foredeep overlies a crystalline basement of Bohemian Massif and continues to the southeast below the Western Carpathians. Jurassic sediments which are mainly composed of autochthonous carbonates increase their thickness in this direction due to the decline of the crystalline basement. Because of this decline, there are two developments of Jurassic sediments, the shallower on the northwest and the deeper on the southeast. The zone between these two developments is known as the Mušov transition zone. For sustainable mineral water resources development, a groundwater flow pattern and recharge are evaluated. This evaluation includes both the hydrogeologic structure of Jurassic carbonates and hydraulically continuous underlying and overlying rocks. Because of the considerable depth of this hydrogeologic structure, which ranges from 100 to 3 000 metres below sea level, this study was based mostly on archive reports related to deep wells at the study area. The extent of studied units was identified on well-log data and geophysical survey interpretation. The resulting groundwater level contour map is based on the spatial distribution of hydraulic heads ranging approx. from 180 to 220 metres above sea level (masl) that were derived from pressure and water density conditions at the Jurassic aquifer. The general direction of groundwater flow is from northwest and southeast to the drainage zone (hydraulic head approx. 170–190 masl) identified in the middle of the studied area, which is identical to a course of the Mušov transition zone and parallel to the course of Dyje river (water table 170–180 masl). The northwestern part of the studied hydrogeological structure also differs from the southeastern part in a lower total mineralization which indicates active inflow of fresh water. The study was also enhanced by a spatial distribution of hydraulic parameters of all modelled units. These parameters were derived from hydrodynamic tests. The hydraulic conductivity values for the major Jurassic aquifer range from 6.0 × 10-4 to 1.3 × 10-9 m/s. The occurrence of the higher hydraulic conductivity near the drainage zone indicates the presence of a well-developed drainage network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.