The Free Energy Principle and Active Inference Framework (FEP-AI) begins with the understanding that persisting systems must regulate environmental exchanges and prevent entropic accumulation. In FEP-AI, minds and brains are predictive controllers for autonomous systems, where action-driven perception is realized as probabilistic inference. Integrated Information Theory (IIT) begins with considering the preconditions for a system to intrinsically exist, as well as axioms regarding the nature of consciousness. IIT has produced controversy because of its surprising entailments: quasi-panpsychism; subjectivity without referents or dynamics; and the possibility of fully-intelligent-yet-unconscious brain simulations. Here, I describe how these controversies might be resolved by integrating IIT with FEP-AI, where integrated information only entails consciousness for systems with perspectival reference frames capable of generating models with spatial, temporal, and causal coherence for self and world. Without that connection with external reality, systems could have arbitrarily high amounts of integrated information, but nonetheless would not entail subjective experience. I further describe how an integration of these frameworks may contribute to their evolution as unified systems theories and models of emergent causation. Then, inspired by both Global Neuronal Workspace Theory (GNWT) and the Harmonic Brain Modes framework, I describe how streams of consciousness may emerge as an evolving generation of sensorimotor predictions, with the precise composition of experiences depending on the integration abilities of synchronous complexes as self-organizing harmonic modes (SOHMs). These integrating dynamics may be particularly likely to occur via richly connected subnetworks affording body-centric sources of phenomenal binding and executive control. Along these connectivity backbones, SOHMs are proposed to implement turbo coding via loopy message-passing over predictive (autoencoding) networks, thus generating maximum a posteriori estimates as coherent vectors governing neural evolution, with alpha frequencies generating basic awareness, and cross-frequency phase-coupling within theta frequencies for access consciousness and volitional control. These dynamic cores of integrated information also function as global workspaces, centered on posterior cortices, but capable of being entrained with frontal cortices and interoceptive hierarchies, thus affording agentic causation. Integrated World Modeling Theory (IWMT) represents a synthetic approach to understanding minds that reveals compatibility between leading theories of consciousness, thus enabling inferential synergy.
New strategies are needed to help people cope with the repercussions of neurodegenerative disorders such as Alzheimer's disease. Patients and caregivers face different challenges, but here we investigated an intervention tailored for this combined population. The program focused on training skills such as attending to the present moment nonjudgmentally, which may help reduce maladaptive emotional responses. Patients participated together with caregivers in weekly group sessions over 8 weeks. An assessment battery was individually administered before and after the program. Pre-post analyses revealed several benefits, including increased quality-of-life ratings, fewer depressive symptoms, and better subjective sleep quality. In addition, participants indicated that they were grateful for the opportunity to learn to apply mindfulness skills and that they would recommend the program to others. In conclusion, mindfulness training can be beneficial for patients and their caregivers, it can be delivered at low-cost to combined groups, and it is worthy of further investigation.
Men exhibit much higher levels of genital and subjective arousal to sexual stimuli containing their preferred sex than they do to stimuli containing only the nonpreferred sex. This study used event-related functional magnetic resonance imaging to investigate how this category-specific pattern would be reflected in the brains of homosexual (n = 11) and heterosexual (n = 11) men. Comparisons of activation to preferred sexual stimuli, nonpreferred sexual stimuli, and sports stimuli revealed large networks correlated with sexual arousal, spanning multiple cortical and subcortical areas. Both homosexual and heterosexual men exhibited category-specific arousal in brain activity. Within the amygdala, greater preference-related activity was observed in homosexual men, but it is unclear whether this is a cause or a consequence of their sexuality. In a subsequent analysis of regions hypothesized to support arousal, both participant groups demonstrated widespread increases in evoked activity for preferred stimuli. Aggregate data from these regions produced significant differences between stimulus types in 16 out of 22 participants. Significant activational differences matched reported sexual orientation in 15 of these 16 participants, representing an advance in psychophysiological measures of arousal.
Distinct thalamic nuclei, like the mediodorsal (MD) nucleus and the centromedian/parafascicular complex (CM/Pf), are embedded in different basal ganglia-thalamocortical loops, which were shown to integrate cognitive and emotional aspects of human behavior. Despite well described connections on a microscopic scale, derived from tracing studies in animals, little is known about the intrinsic anatomical connections of these nuclei in humans. This lack of knowledge limits not only interpretation of functional imaging studies but also estimation of direct effects of deep brain stimulation which treats diseases as different as epilepsy or major depression. Therefore, non-invasive diffusion tensor imaging (DTI) studies are key to analyzing connectivity patterns and elaborate approaches to close this gap. For our study, we explored the structural connectivity of the MD thalamic nuclei and the CM/Pf complex towards five cortical and six subcortical regions by using a preferential fiber calculation. We found both thalamic nuclei to be preferentially associated to distinct networks: whereas the MD is preferentially connected to prefrontal and limbic cortical regions, the CM is linked to subcortical regions. The anterior insula was the only cortical region associated with the subcortical network of the CM and the cortical network of the MD comprised one subcortical hub, the caudate nucleus, suggesting an integrative role of these two regions. Adding to predescribed anatomical tract tracing connectivities in animal studies, our finding lends support to the existence of similar basal ganglia-thalamocortical circuits in humans and we could show a robust distinction of preferential connectivity for both thalamic nuclei.
Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both “Cartesian theaters” and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.