The Ethiopia Strategy Support Program II (ESSP II) Working Papers contain preliminary material and research results from IFPRI and/or its partners in Ethiopia. The papers are not subject to a formal peer review. They are circulated in order to stimulate discussion and critical comment. The opinions are those of the authors and do not necessarily reflect those of their home institutions or supporting organizations.
Since the 1980s, many developing countries have introduced policies to promote seed industry growth and improve the delivery of modern science to farmers, often with a long-term goal of increasing agricultural productivity in smallholder farming systems. Public, private, and civil society actors involved in shaping policy designs have, in turn, developed competing narratives around how best to build an innovative and sustainable seed system, each with varying goals, values, and levels of influence. Efforts to strike a balance between these narratives have often played out in passionate discourses surrounding seed rules and regulations. As a result, however, policymakers in many countries have expressed impatience with the slow progress on enhancing the contribution of a modern seed industry to the overarching goal of increasing agricultural productivity growth. One reason for this slow progress may be that policymakers are insufficiently cognizant of the trade-offs associated with rules and regulations required to effectively govern a modern seed industry. This suggests the need for new data and analysis to improve the understanding of how seed systems function. This paper explores these issues in the context of Asia's rapidly growing seed industry, with illustrations from seed markets for maize and several other crops, to highlight current gaps in the metrics used to analyze performance, competition, and innovation. The paper provides a finite set of indicators to inform policymaking on seed system design and monitoring, and explores how these indicators can be used to inform current policy debates in the region.
Export bans have been frequently used by developing countries in recent years in an attempt to ensure domestic food supplies and insulate domestic market prices from international price hikes. This article uses Tanzania to examine the impact of export bans using a computable general equilibrium model. We find that banning cross‐border maize exports has very little effect on the national food price index and that the benefits from lower maize prices are captured primarily by urban households, while maize producer prices decrease significantly. The export ban further decreases the wage rate for low‐skilled labour and the returns to land, while returns to non‐agricultural capital and wage rates for skilled labour increase, further hurting poor rural households and thus increasing poverty for the country as a whole.
Raytheon Systems Company has developed a prototype infrared imaging rifle-sight using an uncooled, microbolometer EPA. The high-sensitivity FPA (SBRC-151) used in the Long-wavelength Staring Sensor (LWSS) was developed by Raytheon Infrared Center of Excellence (IR COE). The NETD (noise equivalent temperature difference) sensitivity of the camera has been measured at 14 mK with fYi optics and at 74 mK with an 172.1 aperture stop. Excellent imagery has been demonstrated with the 172.1 aperture. The 320 x 240 FPA utilizes a high-yield CMOS readout integrated circuit (ROIC) that achieves high sensitivity, low output nonuniformity, and large scene dynamic range. The ROIC provides multi-level, on-chip nonuniformity correction and on-chip temperature compensation. The FPA has 50 ,im x 50 im pixels and operates at frame rates up to 60 Hz with a single output.The LWSS was characterized by the US Army's NVESD in 1997 using an earlier version of the SBRC-151 FPA. The NVESD measurements validated the Raytheon NETD data. The NVESD evaluation also demonstrated outstanding MRT and spatial noise characteristics.The VO, microbolometer detectors are produced at the Raytheon JR COE facility in Santa Barbara, CA using an advanced dry-etch fabrication process. In addition to the LWSS project, the JR COE has initiated production of the microbolometer FPAs (AE-189) for commercial applications. Over 600 FPAs have been produced on this project, and data is presented for the first 250 FPAs that have been packaged and tested. The pixel operability of the production radiometer FPAs (AE-189) is typically greater than 99.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.