The ability to enforce robust and dynamic access controls on cloud-hosted data while simultaneously ensuring confidentiality with respect to the cloud itself is a clear goal for many users and organizations. To this end, there has been much cryptographic research proposing the use of (hierarchical) identity-based encryption, attribute-based encryption, predicate encryption, functional encryption, and related technologies to perform robust and private access control on untrusted cloud providers. However, the vast majority of this work studies static models in which the access control policies being enforced do not change over time. This is contrary to the needs of most practical applications, which leverage dynamic data and/or policies.In this paper, we show that the cryptographic enforcement of dynamic access controls on untrusted platforms incurs computational costs that are likely prohibitive in practice. Specifically, we develop lightweight constructions for enforcing role-based access controls (i.e., RBAC0) over cloud-hosted files using identitybased and traditional public-key cryptography. This is done under a threat model as close as possible to the one assumed in the cryptographic literature. We prove the correctness of these constructions, and leverage real-world RBAC datasets and recent techniques developed by the access control community to experimentally analyze, via simulation, their associated computational costs. This analysis shows that supporting revocation, file updates, and other state change functionality is likely to incur prohibitive overheads in even minimally-dynamic, realistic scenarios. We identify a number of bottlenecks in such systems, and fruitful areas for future work that will lead to more natural and efficient constructions for the cryptographic enforcement of dynamic access controls. Our findings naturally extend to the use of more expressive cryptographic primitives (e.g., HIBE or ABE) and richer access control models (e.g., RBAC1 or ABAC).• Registration. Each user, u, of the system must carry out an initial registration process with the administrator. The result SU
We describe a population logistic model exposed to a mild life-long sexually transmitted disease, that is, without significant increased mortality among infected individuals and providing no immunity/recovery. We then modify this model to include groups isolated from sexual contact and analyze their potential effect on the dynamics of the population. We are interested in how the isolated class may curb the growth of the infected group while keeping the healthy population at acceptable levels. In particular, we analyze the connection between vertical transmission and isolation from reproduction on the long term behavior of the disease. A comparison with similar effects caused by vaccination and quarantine is also provided. MSC2000: primary 92D30; secondary 92D25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.