BackgroundTransgenic Plasmodium falciparum expressing luciferase offers an attractive bioluminescence-based assay platform for the investigation of the pharmacological properties of anti-malarial drugs. Here a side-by-side comparison of bioluminescence and fluorescence-based assays, utilizing a luciferase reporter cassette that confers a strong temporal pattern of luciferase expression during the S-phase of intraerythrocytic development, is reported.MethodsKey assay parameters for a range of commercially available luminogenic substrates are determined and compared to those measured using a Malaria Sybr Green I fluorescence assay. In addition, the short-term temporal effects of anti-malarial compounds are evaluated using both bioluminescent and fluorescent assay platforms.ResultsThe Z’, % coefficient of variation and 50% inhibition concentrations are essentially the same for bioluminescent and fluorescent assays in transgenic parasites generated in both chloroquine-sensitive and -resistant genetic backgrounds. Bioluminescent assays, irrespective of the luminogenic agent employed, do, however, offer significantly enhanced signal-to-noise ratios. Moreover, the bioluminescent assay is more dynamic in terms of determining temporal effects immediately following drug perturbation.ConclusionThis study suggests that opportunities for bioluminescence-based assays lie not in the measurement of 50% inhibition concentrations, where the cheaper fluorescence assay performs excellently and is not restricted by the need to genetically modify the parasite clone under investigation. Instead, assays that use the dynamic response of the luciferase reporter for semi-automated screening of additional pharmacological properties, such as relative rate-of-kill and lethal dose estimation, are a more attractive development opportunity.
COVID-19 has forced rapid clinical translation of novel vaccine technologies, principally mRNA vaccines, that have resulted in meaningful efficacy and adequate safety in response to the global pandemic. Notwithstanding this success, there remains an opportunity for innovation in vaccine technology to address current limitations and meet the challenges of inevitable future pandemics. We describe a universal vaccine cell (UVC) rationally designed to mimic the natural physiologic immunity induced post viral infection of host cells. Induced pluripotent stem cells were CRISPR engineered to delete MHC-I expression and simultaneously overexpress a NK Ligand adjuvant to increase rapid cellular apoptosis which was hypothesized to enhance viral antigen presentation in the resulting immune microenvironment leading to a protective immune response. Cells were further engineered to express the parental variant WA1/2020 SARS-CoV-2 spike protein as a representative viral antigen prior to irradiation and cryopreservation. The cellular vaccine was then used to immunize non-human primates in a standard 2-dose, IM injected prime + boost vaccination with 1e8 cells per 1 ml dose resulting in robust neutralizing antibody responses (1e3 nAb titers) with decreasing levels at 6 months duration. Similar titers generated in this established NHP model have translated into protective human neutralizing antibody levels in SARS-Cov-2 vaccinated individuals. Animals vaccinated with WA1/2020 spike antigens were subsequently challenged with 1.0 x 105 TCID50 infectious Delta (B.1.617.2) SARS-CoV-2 in a heterologous challenge which resulted in an approximately 3-log order decrease in viral RNA load in the lungs. These heterologous viral challenge results reflect the ongoing real-world experience of original variant WA1/2020 spike antigen vaccinated populations exposed to rapidly emerging variants like Delta and now Omicron. This cellular vaccine is designed to be a rapidly scalable cell line with a modular poly-antigenic payload to allow for practical, large-scale clinical manufacturing and use in an evolving viral variant environment. Human clinical translation of the UVC is being actively explored for this and potential future pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.