We describe PNUTS, a massively parallel and geographically distributed database system for Yahoo!'s web applications. PNUTS provides data storage organized as hashed or ordered tables, low latency for large numbers of concurrent requests including updates and queries, and novel per-record consistency guarantees. It is a hosted, centrally managed, and geographically distributed service, and utilizes automated load-balancing and failover to reduce operational complexity. The first version of the system is currently serving in production. We describe the motivation for PNUTS and the design and implementation of its table storage and replication layers, and then present experimental results.
We study the problem of bulk-inserting records into tables in a system that horizontally range-partitions data over a large cluster of shared-nothing machines. Each table partition contains a contiguous portion of the table's key range, and must accept all records inserted into that range. Examples of such systems include BigTable [8] at Google, and PNUTS [15] at Yahoo! During bulk inserts into an existing table, if most of the inserted records end up going into a small number of data partitions, the obtained throughput may be very poor due to ineffective use of cluster parallelism. We propose a novel approach in which a planning phase is invoked before the actual insertions. By creating new partitions and intelligently distributing partitions across machines, the planning phase ensures that the insertion load will be well-balanced. Since there is a tradeoff between the cost of moving partitions and the resulting throughput gain, the planning phase must minimize the sum of partition movement time and insertion time. We show that this problem is a variation of NP-hard bin-packing, reduce it to a problem of packing vectors, and then give a solution with provable approximation guarantees. We evaluate our approach on a prototype system deployed on a cluster of 50 machines, and show that it yields significant improvements over more naïve techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.