It is shown that molecular electronic circular dichroism (CD) can systematically be investigated by means of adiabatic time-dependent density functional theory (TDDFT). We briefly summarize the theory and outline its extension for the calculation of rotatory strengths. A new, efficient algorithm has been implemented in the TURBOMOLE program package for the present work, making large-scale applications feasible. The study of circular dichroism in helicenes has played a crucial role in the understanding of molecular optical activity. We present the first ab initio simulation of electronic CD spectra of [n]helicenes, n ) 4-7, 12. Substituent effects are considered for the 2,15-dicyano and 2,15-dimethoxy derivates of hexahelicene; experimental CD spectra of these compounds were newly recorded for the present work. The calculations correctly reproduce the most important spectral features and greatly facilitate interpretation. We propose assignments of the lowenergy bands in terms of individual excited states. Changes in the observed spectra depending on the number of rings and substitution patterns are worked out and rationalized. Merits and limitations of TDDFT in chemical applications are discussed.
The synthesis of aliphatically bridged [1](n)rotaxanes and (n)pretzelanes in preparative yields and the dependency of their chiroptical properties on the length (n) of their bridge are reported. A cycloenantiomeric bis(sulphonamide)[2]rotaxane with a sulphonamide group in its axle and its wheel was intramolecularly dialkylated by homologous bifunctional oligomethylene reagents to form chiral [1](n)rotaxanes bearing bridges of different lengths (n) between the axle and the wheel. Intramolecular dialkylation by 1,omega-dibromoalkanes of a topologically chiral bis(sulphonamide)[2]catenane with a sulphonamide group in both of the macrolactam rings leads to pretzel shaped molecules ((n)pretzelanes) with homologous bridges between the two macrocycles. Their yields decrease with decreasing length of the bridge. The shortest bridge isolated so far in reasonable amounts consists of six methylene groups ((6)pretzelane). Remarkably, a covalent connection of axle and wheel in a [2]rotaxane was successful even with much shorter bridges-down to only three methylene groups ([1](3)rotaxane). The structural changes of the [1](n)rotaxanes with decreasing bridge length is expressed by an increasing high-field shift in the 1H NMR spectra. Enantiomeric resolution of the racemates of both series was achieved in seven cases for the [1](n)rotaxanes and two for the (n)pretzelanes by use of chiral HPLC columns. The circular dichrograms of both compound families show a strong dependency on the length of the bridge. However, the shortest bridges displayed some additional unexpected deviations. A new specification of the absolute configuration of supramolecules, such as [n]catenanes, [n]rotaxanes and (n)pretzelanes is introduced together with some nomenclature additions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.