DB2 with BLU Acceleration deeply integrates innovative new techniques for defining and processing column-organized tables that speed read-mostly Business Intelligence queries by 10 to 50 times and improve compression by 3 to 10 times, compared to traditional row-organized tables, without the complexity of defining indexes or materialized views on those tables. But DB2 BLU is much more than just a column store. Exploiting frequency-based dictionary compression and main-memory query processing technology from the Blink project at IBM Research -Almaden, DB2 BLU performs most SQL operations -predicate application (even range predicates and IN-lists), joins, and grouping -on the compressed values, which can be packed bit-aligned so densely that multiple values fit in a register and can be processed simultaneously via SIMD (single-instruction, multipledata) instructions. Designed and built from the ground up to exploit modern multi-core processors, DB2 BLU's hardware-conscious algorithms are carefully engineered to maximize parallelism by using novel data structures that need little latching, and to minimize data-cache and instructioncache misses. Though DB2 BLU is optimized for in-memory processing, database size is not limited by the size of main memory. Fine-grained synopses, late materialization, and a new probabilistic buffer pool protocol for scans minimize disk I/Os, while aggressive prefetching reduces I/O stalls. Full integration with DB2 ensures that DB2 with BLU Acceleration benefits from the full functionality and robust utilities of a mature product, while still enjoying order-ofmagnitude performance gains from revolutionary technology without even having to change the SQL, and can mix columnorganized and row-organized tables in the same tablespace and even within the same query.
In a classic transactional distributed database management system (DBMS), write transactions invariably synchronize with a coordinator before final commitment. While enforcing serializability, this model has long been criticized for not satisfying the applications' availability requirements. When entering the era of Internet of Things (IoT), this problem has become more severe, as an increasing number of applications call for the capability of hybrid transactional and analytical processing (HTAP), where aggregation constraints need to be enforced as part of transactions. Current systems work around this by creating escrows, allowing occasional overshoots of constraints, which are handled via compensating application logic.The WiSer DBMS targets consistency with availability, by splitting the database commit into two steps. First, a PROMISE step that corresponds to what humans are used to as commitment, and runs without talking to a coordinator. Second, a SERIALIZE step, that fixes transactions' positions in the serializable order, via a consensus procedure. We achieve this split via a novel data representation that embeds read-sets into transaction deltas, and serialization sequence numbers into table rows. WiSer does no sharding (all nodes can run transactions that modify the entire database), and yet enforces aggregation constraints. Both read-write conflicts and aggregation constraint violations are resolved lazily in the serialized data. WiSer also covers node joins and departures as database tables, thus simplifying correctness and failure handling. We present the design of WiSer as well as experiments suggesting this approach has promise.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.