We present an algorithm for finding an explicit description of solution sets of systems of strict polynomial inequalities, correct up to lower dimensional algebraic sets. Such a description is sufficient for many practical purposes, such as volume integration, graphical representation of solution sets, or global optimization over open sets given by polynomial inequality constraints. Our algorithm is based on the cylindrical algebraic decomposition algorithm. It uses a simplified projection operator, and constructs only rational sample points.
Recent progress in polynomial elimination has rendered the computation of the real roots of ill-conditioned polynomials of high degree (over 1000) with huge coefficients (several thousand digits) a critical operation in computer algebra.
To rise to the occasion, the only method-candidate that has been considered by various authors for modification and improvement has been the Collins-Akritas bisection method [1], which is a based on a variation of Vincent’s theorem [2].
The most recent example is the paper by Rouillier and Zimmermann [3], where the authors present “... a new algorithm, which is optimal in terms of memory usage and as fast as both Collins and Akritas’ algorithm and Krandick variant ...” [3]
In this paper we compare our own continued fractions method CF [4] (which is directly based on Vincent’s theorem) with the best bisection method REL described in [3]. Experimentation with the data presented in [3] showed that, with respect to time, our continued fractions method CF is by far superior to REL, whereas the two are about equal with respect to space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.