Auger electron spectroscopy, high-resolution electron energy loss spectroscopy and temperature programmed desorption methods have been used in order to investigate the adsorption properties and reactions of acetaldehyde on gold decorated rhodium and BN/Rh(111) surfaces. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements were carried out to characterize the gold nanoparticles on clean and hexagonal boron nitride (h-BN) covered Rh(111). The adsorption of acetaldehyde was not completely hindered by gold atoms; however, depending on the structure of the outermost bimetallic layer (surface alloy) the dissociation of the parent molecule was suppressed, namely the production of carbon monoxide was inhibited by the gold domains. Our measurements with acetaldehyde on Au/h-BN/Rh(111) confirmed the observation that the lack of suitable adsorption sites eliminates the formation of CO. Nevertheless, increased coverage of gold enhanced the amount of adsorbed aldehyde at low temperature. We may predict that the low reactivity of acetaldehyde on Au/h-BN/Rh(111) significantly determine the ethanol decomposition mechanism on this surface.
Adsorption
properties of azobenzene, the prototypical molecular
switch, were investigated on a hexagonal boron nitride (h-BN) monolayer
(“nanomesh”) prepared on Rh(111). The h-BN layer was
produced by decomposing borazine (B
3
N
3
H
6
) at 1000–1050 K. Temperature-programmed desorption
(TPD) studies revealed that azobenzene molecules adsorbed on the “wire”
and “pore” regions desorb at slightly different temperatures.
Angle-resolved high-resolution electron energy loss spectroscopy (HREELS)
measurements demonstrated that the first molecular layer is characterized
predominantly by an adsorption geometry with the molecular plane parallel
to the surface. Scanning tunneling microscopy (STM) indicated a clear
preference for adsorption in the pores, manifesting a templating effect,
but in some cases one-dimensional molecular stripes also form, implying
attractive molecule–molecule interaction. Density functional
theory (DFT) calculations provided further details regarding the adsorption
energetics and bonding and confirmed the experimental findings that
the molecules adsorb with the phenyl rings parallel to the surface,
preferentially in the pores, and indicated also the presence of an
attractive molecule–molecule interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.