Background:The analysis of plasma cell-free DNA (cfDNA) is expected to provide useful biomarkers for early diagnosis of non-small-cell lung cancer (NSCLC). However, it remains unclear whether the intense release of cfDNA into the bloodstream of NSCLC patients results from malignancy or chronic inflammatory response. Consequently, the current diagnostic utility of plasma cfDNA quantification has not been thoroughly validated in subjects with chronic respiratory inflammation. Here we assess the effect of chronic respiratory inflammation on plasma cfDNA levels and evaluate the potential clinical value of this phenomenon as an early lung cancer diagnostic tool.Methods:We measured plasma cfDNA concentrations in 50 resectable NSCLC patients, 101 patients with chronic respiratory inflammation (chronic obstructive pulmonary disease, sarcoidosis, or asthma) and 40 healthy volunteers using real-time PCR.Results:We found significantly higher plasma cfDNA levels in NSCLC patients than in subjects with chronic respiratory inflammation and healthy individuals (P<0.0001). There were no significant differences in plasma cfDNA levels between patients with chronic respiratory inflammation and healthy volunteers. The cutoff point of >2.8 ng ml−1 provided 90% sensitivity and 80.5% specificity in discriminating NSCLC from healthy individuals (area under the curve (AUC)=0.90). The receiver-operating characteristics curve distinguishing NSCLC patients from subjects with chronic respiratory inflammation indicated 56% sensitivity and 91% specificity at the >5.25-ng ml−1 cutoff (AUC=0.76).Conclusions:We demonstrated that elevated plasma cfDNA levels in NSCLC resulted primarily from tumour development rather than inflammatory response, raising the potential clinical implications for lung cancer screening and early diagnosis. Further research is necessary to better characterise and identify factors and processes regulating cfDNA levels in the blood under normal and pathological conditions.
Lung cancer is the most common cancer worldwide. Up to 85% of lung cancer cases are diagnosed as nonsmall cell lung cancer (NSCLC). The effectiveness of NSCLC treatment is expected to be improved through the implementation of robust and specific biomarkers. MicroRNAs (miRNAs) are small, non-coding molecules that play a key role in the regulation of basic cellular processes, including differentiation, proliferation and apoptosis, by controlling gene expression at the post-transcriptional level.
Lung cancer is the leading worldwide source of cancer-related death. It is acknowledged that prognosis and treatment outcomes in lung cancer might be improved by increasing the effectiveness of early-stage diagnosis. Several recently published studies have produced intriguing results regarding the detection of biomarkers in tumor samples, but also in easily accessible specimens such as sputum, plasma, and exhaled breath condensate. This review presents advances in genetic diagnostics of lung cancer, with particular reference to the clinical usefulness of individual biomarkers, specimens, and methods. The adequacy of their sensitivity and specificity for cancer screening and early detection is discussed in detail.
Free-circulating DNA concentration in plasma was significantly higher in NSCLC patients versus healthy controls. Its drastic increase following radical NSCLC treatment was most likely due to the surgical trauma. Importantly, the kinetics of plasma free-circulating DNA seems to be a promising marker of long-term effects of radical surgery in NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.