Diabetic cardiomyopathy is characterised in its early stages by diastolic relaxation abnormalities and later by clinical heart failure in the absence of dyslipidaemia, hypertension and coronary artery disease. Insulin resistance, hyperinsulinaemia and hyperglycaemia are each independent risk factors for the development of diabetic cardiomyopathy. The pathophysiological factors in diabetes that drive the development of cardiomyopathy include systemic metabolic disorders, inappropriate activation of the renin-angiotensin-aldosterone system, subcellular component abnormalities, oxidative stress, inflammation and dysfunctional immune modulation. These abnormalities collectively promote cardiac tissue interstitial fibrosis, cardiac stiffness/diastolic dysfunction and, later, systolic dysfunction, precipitating the syndrome of clinical heart failure. Recent evidence has revealed that dysregulation of coronary endothelial cells and exosomes also contributes to the pathology behind diabetic cardiomyopathy. Herein, we review the relationships among insulin resistance/hyperinsulinaemia, hyperglycaemia and the development of cardiac dysfunction. We summarise the current understanding of the pathophysiological mechanisms in diabetic cardiomyopathy and explore potential preventative and therapeutic strategies.
The global burden of kidney disease is increasing strikingly in parallel with increases in obesity and diabetes. Indeed, chronic kidney disease (CKD) and end-stage renal disease (ESRD) coupled with comorbidities such as obesity, diabetes, and hypertension cost the health care system hundreds of billions of dollars in the US alone. The progression to ESRD in patients with obesity and diabetes continues despite widespread use of inhibitors of the renin-angiotensin-aldosterone system (RAAS) along with aggressive blood pressure and glycemic control in these high-risk populations. Thereby, it is increasingly important to better understand the underlying mechanisms involved in obesity-related CKD in order to develop new strategies that prevent or interrupt the progression of this costly disease. In this context, a key mechanism that drives development and progression of kidney disease in obesity is endothelial dysfunction and associated tubulointerstitial fibrosis. However, the precise interactive mechanisms in the development of aortic and kidney endothelial dysfunction and tubulointerstitial fibrosis remain unclear. Further, strategies specifically targeting kidney fibrosis have yielded inconclusive benefits in human studies. While clinical data support the benefits derived from inhibition of the RAAS, there is a tremendous amount of residual risk for the progression of kidney disease in individuals with obesity and diabetes. There is promising experimental data to suggest that exercise, targeting inflammation and oxidative stress, lowering uric acid, and targeting the mineralocorticoid receptor signaling and/or sodium channel inhibition could improve tubulointerstitial fibrosis and mitigate progression of kidney disease in persons with obesity and diabetes.
Recent data implicate oxidative stress as a mediator of pulmonary hypertension (PH) and of the associated pathological changes to the pulmonary vasculature and right ventricle (RV). Increases in reactive oxygen species (ROS), altered redox state, and elevated oxidant stress have been demonstrated in the lungs and RV of several animal models of PH, including chronic hypoxia, monocrotaline toxicity, caveolin-1 knock-out mouse, and the transgenic Ren2 rat which overexpresses the mouse renin gene. Generation of ROS in these models is derived mostly from the activities of the nicotinamide adenine dinucleotide phosphate oxidases, xanthine oxidase, and uncoupled endothelial nitric oxide synthase. As disease progresses circulating monocytes and bone marrow-derived monocytic progenitor cells are attracted to and accumulate in the pulmonary vasculature. Once established, these inflammatory cells generate ROS and secrete mitogenic and fibrogenic cytokines that induce cell proliferation and fibrosis in the vascular wall resulting in progressive vascular remodeling. Deficiencies in antioxidant enzymes also contribute to pulmonary hypertensive states. Current therapies were developed to improve endothelial function, reduce pulmonary artery pressure, and slow the progression of vascular remodeling in the pulmonary vasculature by targeting deficiencies in either NO (PDE-type 5 inhibition) or PGI(2) (prostacyclin analogs), or excessive synthesis of ET-1 (ET receptor blockers) with the intent to improve patient clinical status and survival. New therapies may slow disease progression to some extent, but long term management has not been achieved and mortality is still high. Although little is known concerning the effects of current pulmonary arterial hypertension treatments on RV structure and function, interest in this area is increasing. Development of therapeutic strategies that simultaneously target pathology in the pulmonary vasculature and RV may be beneficial in reducing mortality associated with RV failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.