Macrophages (MΦs)/microglia that constitute the dominant tumor-infiltrating immune cells in glioblastoma are recruited by tumor-secreted factors and are induced to become immunosuppressive and tumor supportive (M2). Glioma cancer stem cells (gCSCs) have been shown to suppress adaptive immunity, but their role in innate immunity with respect to the recruitment and polarization of MΦs/microglia is unknown. The innate immunosuppressive properties of the gCSCs were characterized based on elaborated MΦ inhibitory cytokine-1 (MIC-1), transforming growth factor (TGF-β1), soluble colony-stimulating factor (sCSF), recruitment of monocytes, inhibition of MΦ/microglia phagocytosis, induction of MΦ/microglia cytokine secretion, and the inhibition of T-cell proliferation. The role of the signal transducer and activator of transcription 3 (STAT3) in mediating innate immune suppression was evaluated in the context of the functional assays. The gCSCs produced sCSF-1, TGF-β1, and MIC-1, cytokines known to recruit and polarize the MΦs/microglia to become immunosuppressive. The gCSC-conditioned medium polarized the MΦ/microglia to an M2 phenotype, inhibited MΦ/microglia phagocytosis, induced the secretion of the immunosuppressive cytokines interleukin-10 (IL-10) and TGF-β1 by the MΦs/microglia, and enhanced the capacity of MΦs/microglia to inhibit T-cell proliferation. The inhibition of phagocytosis and the secretion of IL-10 were reversed when the STAT3 pathway was blocked in the gCSCs. The gCSCs modulate innate immunity in glioblastoma by inducing immunosuppressive MΦs/microglia, and this capacity can be reversed by inhibiting phosphorylated STAT3.
Glioblastoma multiforme (GBM) is a lethal cancer that responds poorly to radiotherapy and chemotherapy. Glioma cancer-initiating cells have been shown to recapitulate the characteristic features of GBM and mediate chemotherapy and radiation resistance. However, it is unknown whether the cancer-initiating cells contribute to the profound immune suppression in GBM patients. Recent studies have found that the activated form of signal transducer and activator of transcription 3 (STAT3) is a key mediator in GBM immunosuppression. We isolated and generated CD133+ cancer-initiating single colonies from GBM patients and investigated their immunesuppressive properties. We found that the cancer-initiating cells inhibited T-cell proliferation and activation, induced regulatory Tcells, and triggered T-cell apoptosis. The STAT3 pathway is constitutively active in these clones and the immunosuppressive properties were markedly diminished when the STAT3 pathway was blocked in the cancer-initiating cells. These findings indicate that cancer-initiating cells contribute to the immune evasion of GBM and that blockade of the STAT3 pathway has therapeutic potential. Mol Cancer Ther; 9(1); 67-78. ©2010 AACR.
Purpose: Glioblastoma multiforme is a lethal cancer that responds poorly to therapy. Glioblastoma multiforme cancer-initiating cells have been shown to mediate resistance to both chemotherapy and radiation; however, it is unknown to what extent these cells contribute to the profound immunosuppression in glioblastoma multiforme patients and if strategies that alter their differentiation state can reduce this immunosuppression.Experimental Design: We isolated a subpopulation of cells from glioblastoma multiforme that possessed the capacity for self-renewal, formed neurospheres in vitro, were capable of pluripotent differentiation, and could initiate tumors in vivo. The immune phenotype of these cells was characterized including the elaboration of immunosuppressive cytokines and chemokines by ELISA. Functional immunosuppressive properties were characterized based on the inhibition of T-cell proliferation and effector responses, triggering of T-cell apoptosis, and induction of FoxP3 + regulatory T cells. On altering their differentiation state, the immunosuppressive phenotype and functional assays were reevaluated. Results: We found that the cancer-initiating cells markedly inhibited T-cell proliferation and activation, induced regulatory T cells, and triggered T-cell apoptosis that was mediated by B7-H1 and soluble Galectin-3. These immunosuppressive properties were diminished on altering the differentiation of the cancer-initiating cells.
Glioblastoma multiforme (GBM) is a lethal cancer that exerts potent immune suppression. Hypoxia is a predominant feature of GBM, but it is unclear to the degree in which tumor hypoxia contributes to this tumor-mediated immunosuppression. Utilizing GBM associated cancer stem cells (gCSCs) as a treatment resistant population that has been shown to inhibit both innate and adaptive immune responses, we compared immunosuppressive properties under both normoxic and hypoxic conditions. Functional immunosuppression was characterized based on production of immunosuppressive cytokines and chemokines, the inhibition of T cell proliferation and effector responses, induction of FoxP3+ regulatory T cells, effect on macrophage phagocytosis, and skewing to the immunosuppressive M2 phenotype. We found that hypoxia potentiated the gCSC-mediated inhibition of T cell proliferation and activation and especially the induction of FoxP3+T cells, and further inhibited macrophage phagocytosis compared to normoxia condition. These immunosuppressive hypoxic effects were mediated by signal transducer and activator of transcription 3 (STAT3) and its transcriptionally regulated products such as hypoxia inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF). Inhibitors of STAT3 and HIF-1α down modulated the gCSCs' hypoxia-induced immunosuppressive effects. Thus, hypoxia further enhances GBM-mediated immunosuppression, which can be reversed with therapeutic inhibition of STAT3 and HIF-1α and also helps to reconcile the disparate findings that immune therapeutic approaches can be used successfully in model systems but have yet to achieve generalized successful responses in the vast majority of GBM patients by demonstrating the importance of the tumor hypoxic environment.
Purpose CMV has been ubiquitously detected within high-grade gliomas, but its role in gliomagenesis has not been fully elicited. Experimental Design Glioblastoma multiforme (GBM) tumors were analyzed by flow cytometry to determine CMV antigen expression within various glioma-associated immune populations. The gCSC CMV IL-10 production was determined by ELISA. Human monocytes were stimulated with recombinant CMV IL-10 and levels of expression of p-STAT3, VEGF, TGF-β, viral IE1 and pp65 were determined by flow cytometry. The influence of CMV IL-10 treated monocytes on gCSC biology was ascertained by functional assays. Results CMV demonstrated a tropism for macrophages (MΦs)/microglia and CD133+ gCSCs within GBMs. The gCSCs produce CMV IL-10, which induces human monocytes (the precursor to the CNS MΦs/microglia) to assume an M2 immunosuppressive phenotype (as manifested by down modulation of the major histocompatibility complex and costimulatory molecules) while up regulating immune inhibitory B7-H1. CMV IL-10 also induces expression of viral IE1, a modulator of viral replication and transcription in the monocytes. Finally, the CMV IL-10-treated monocytes produced angiogeneic VEGF, immunosuppressive TGF-β, and enhanced migration of gCSCs. Conclusions CMV triggers a feed-forward mechanism of gliomagenesis by inducing tumor-supportive monocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.