Mangrove forests, one of the world’s most endangered ecosystems, are also some of the most difficult to access. This is especially true along the Pacific coast of Costa Rica, where 99% of the country’s mangroves occur. Unmanned Aerial Systems (UAS), or drones, have become a convenient tool for natural area assessment, and offer a solution to the problems of remote mangrove monitoring. This study is the first to use UAS to analyze the structure of a mangrove forests within Central America. Our goals were to (1) determine the forest structure of two estuaries in northwestern Costa Rica through traditional ground measurements, (2) assess the accuracy of UAS measurements of canopy height and percent coverage and (3) determine whether the normalized difference vegetation index (NDVI) could discriminate between the most abundant mangrove species. We flew a UAS equipped with a single NDVI sensor during the peak wet (Sept–Nov) and dry (Jan–Feb) seasons. The structure and species composition of the estuaries showed a possible transition between the wet mangroves of southern Costa Rica and the drier northern mangroves. UAS-derived measurements at 100 cm/pixel resolution of percent canopy coverage and maximum and mean canopy height were not statistically different from ground measurements (p > 0.05). However, there were differences in mean canopy height at 10 cm/pixel resolution (p = 0.043), indicating diminished returns in accuracy as resolution becomes extremely fine. Mean NDVI values of Avicennia germinans (most abundant species) changed significantly between seasons (p < 0.001). Mean NDVI of Rhizophora racemosa (second most abundant species) was significantly different from A . germinans and dry forest dominant plots during the dry season (p < 0.001), demonstrating NDVI’s capability of discriminating mangrove species. This study provides the first structural assessment of the studied estuaries and a framework for future studies of mangroves using UAS.
Surveying the breeding population of a given species can be difficult for many logistic reasons. Marine turtles are a challenging taxon for the study of reproductive ecology and breeding strategies, because turtles aggregate off-shore and males remain exclusively at sea. For successful management of sea turtle populations, determining operational sex ratios (OSRs) on a continuing basis is critical for determining long-term population viability, particularly in the context of changing hatchling sex ratios due to temperature-dependent sex determination in a warming climate. To understand how survey technique and stage of the breeding season might influence the ability to detect turtles and determine OSRs, we surveyed the presence and identified the sex of adult male and female green sea turtles (Chelonia mydas) using a boat and small commercial unoccupied/unmanned aerial vehicle (UAV), at the start (October) and peak (December) of a nesting season at an important breeding site at Heron Island, Great Barrier Reef, Australia. The ratio of males to females within the breeding ground detected by both survey methods changed from being male-biased in October to heavily female-biased in December, indicating that most males cease their reproductive effort and depart before the peak of the nesting season. Surveying with a UAV more than doubled the rate of turtles seen per minute of survey effort compared with surveying solely from the boat and allowed surveys to be conducted at times and/or places unsafe or inaccessible for boats. The sex of a slightly greater proportion of turtles seen could not be identified by observers using a UAV versus a boat, although more turtles were detected using the UAV. The departure of many males during the peak of the nesting season is likely due to an increasing biological cost of residency in the area because males encounter fewer receptive females as the season progresses and the limited foraging opportunity is insufficient to support the number of males present. Overall, we found that UAVs are an effective tool for studying important but difficult to observe aspects of sea turtle biology.
Introduction: Tropical dry forests and mangroves, two of the world’s most endangered ecosystems, each host a different set of environmental conditions which may support unique assemblages of species. However, few studies have looked at the unique vertebrate biodiversity in regions where both habitats occur side-by-side. Objective: To assess the vertebrate diversity and patterns of habitat usage in a mangrove and tropical dry forest matrix in an unprotected region of Northwestern Costa Rica. Methods: The study was conducted in a 7 km2 matrix of mangrove and tropical dry forests between Cabuyal and Zapotillal bays in Northwestern Costa Rica, South of Santa Rosa National Park. From September 2017 to March 2018, we used 13 automatic camera traps over 1 498 trap days to capture species utilizing the region and assess their patterns of habitat usage both spatially and temporally. Results: Seventy vertebrate species from 42 families in 27 orders were detected, including several globally threatened species. Over half of all species were detected in only one habitat, particularly amongst avian (78 %) and mammalian (42 %) species. Tropical dry forests hosted the greatest number of unique species and supported a greater percentage of herbivores than mangrove or edge habitats, which were dominated by carnivorous and omnivorous species. Mean detections per camera trap of all species increased significantly from the coldest and wettest month (Oct) to the hottest and driest months (Jan & Feb) in tropical dry forests. Sample-based rarefaction analysis revealed that survey length was sufficient to sample the tropical dry forest and edge habitats, though mangroves require further sampling. Conclusions: Taxa found to utilize different forest types may utilize each for different stages of their life cycle, moving between areas as environmental conditions change throughout the year. General patterns of global biodiversity favoring carnivore and omnivore usage of mangrove forests was confirmed in our study.
Sea turtles are a circumglobal taxon that receive considerable research and conservation attention; however, there is little published information about patterns of representation for people working with these species. To assess long-term trends in gender, geographic, and institutional representation within the sea turtle community, we quantified information from 7041 abstracts presented at the International Sea Turtle Symposium (ISTS) between 1988–2018. We report several key findings. (1) The number of authors per abstract doubled over the study period, suggesting greater acknowledgment of contributing individuals. (2) The proportion of female first and last authors has increased over time and at the end of the study period female first authors were in a slight majority (53%) even though last authors remained predominantly (64%) male. (3) Most researchers were from North America (45%) but representation from other continents has increased over time. (4) It was common for authors from North America (34%) and Europe (42%) to conducted research in other continents. This was far less common (<6%) for authors in Africa, Asia, Central America and the Caribbean, and South America. (5) Most authors (48%) were affiliated with academic institutions. Overall, our results reveal a slow trend toward gender equity and globalization in the sea turtle community. Increasing opportunities for underrepresented groups should therefore remain a key priority. To facilitate this process, we suggest hosting symposiums in underrepresented regions, providing grants for underrepresented individuals, developing opportunities to present abstracts remotely via hybrid events, and promoting gender equity in senior researcher positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.