The main objective of this research was to determine the effects of a long-term ketogenic diet, rich in polyunsaturated fatty acids, on aerobic performance and exercise metabolism in off-road cyclists. Additionally, the effects of this diet on body mass and body composition were evaluated, as well as those that occurred in the lipid and lipoprotein profiles due to the dietary intervention. The research material included eight male subjects, aged 28.3 ± 3.9 years, with at least five years of training experience that competed in off-road cycling. Each cyclist performed a continuous exercise protocol on a cycloergometer with varied intensity, after a mixed and ketogenic diet in a crossover design. The ketogenic diet stimulated favorable changes in body mass and body composition, as well as in the lipid and lipoprotein profiles. Important findings of the present study include a significant increase in the relative values of maximal oxygen uptake (VO2max) and oxygen uptake at lactate threshold (VO2 LT) after the ketogenic diet, which can be explained by reductions in body mass and fat mass and/or the greater oxygen uptake necessary to obtain the same energy yield as on a mixed diet, due to increased fat oxidation or by enhanced sympathetic activation. The max work load and the work load at lactate threshold were significantly higher after the mixed diet. The values of the respiratory exchange ratio (RER) were significantly lower at rest and during particular stages of the exercise protocol following the ketogenic diet. The heart rate (HR) and oxygen uptake were significantly higher at rest and during the first three stages of exercise after the ketogenic diet, while the reverse was true during the last stage of the exercise protocol conducted with maximal intensity. Creatine kinase (CK) and lactate dehydrogenase (LDH) activity were significantly lower at rest and during particular stages of the 105-min exercise protocol following the low carbohydrate ketogenic diet. The alterations in insulin and cortisol concentrations due to the dietary intervention confirm the concept that the glucostatic mechanism controls the hormonal and metabolic responses to exercise.
Post activation potentiation (PAP) has shown improved performance during movements requiring large muscular power output following contractions under near maximal load conditions. PAP can be described as an acute enhancement of performance or an enhancement of factors determining an explosive sports activity following a preload stimulus. In practice, PAP has been achieved by complex training, which involves a combination of a heavy loaded exercise followed by a biomechanically similar explosive activity, best if specific for a particular sport discipline. The main objective of this study was to investigate the effects of PAP on performance in explosive motor activities specific for basketball, luge and athletics throws. The novel approach to the experiments included individualized recovery time (IRT) between the conditioning exercise and the explosive activity. Additionally, the research groups were homogenous and included only competitive athletes of similar age and training experience. Thirty one well trained athletes from 3 different sport disciplines participated in the study. All athletes performed a heavy loaded conditioning activity (80-130%1RM) followed by a biomechanically similar explosive exercise, during which power (W) or the rate of power development (W/s/kg) was evaluated. The results of our experiment confirmed the effectiveness of PAP with well-trained athlets during explosive motor activities such as jumping, throwing and pushing. Additionally, our research showed that eccentric supramaximal intensities (130% 1RM) can be effective in eliciting PAP in strength trained athletes. Our experiments also showed that the IRT should be individualized because athletes differ in the strength level, training experience and muscle fiber structure. In the three experiments conducted with basketball players, track and field athletes and luge athletes, the optimal IRT equaled 6 min. This justifies the need to individualize the volume and intensity of the CA, and especially the IRT, between the CA and the explosive activity.
Volume and intensity of exercise are the basic components of training loads, having a direct impact on adaptive patterns. Exercise volume during resistance training has been conventionally evaluated as a total number of repetitions performed in each set, regardless of the time and speed of performing individual exercises. The aim of this study was to evaluate the effect of varied tempos i.e. regular (REG) 2/0/2/0, medium (MED) 5/0/3/0 and slow (SLO) 6/0/4/0 during resistance exercise on training volume, based on the total number of performed repetitions (REPsum1-5) and time under tension (TUTsum1-5). Significant differences in TUT (s) were found in particular sets for each tempo of 2/0/2/0, 5/0/3/0 and 6/0/4/0 (p < 0.001). The ANOVA also revealed substantial differences in the REP for individual sets (p < 0.001). Post-hoc analyses showed that TUT for each set and total TUTsum1-5 were significantly higher in the 5/0/3/0 and 6/0/4/0 tempos compared to 2/0/2/0 (p < 0.001). REP was significantly higher for the 2/0/2/0 tempo compared to 5/0/3/0 and 6/0/4/0 tempo in each set. Total REPsum1-5, TUTsum1-5 between 5/0/3/0 and 6/0/4/0 tempos were not significantly different. The main finding of this study is that the movement tempo in strength training impacts training volume, both in terms of repetitions and total time under tension.
Background: The main goal of this study was to assess the acute effects of the intake of 9 and 11 mg/kg/ body mass (b.m.) of caffeine (CAF) on maximal strength and muscle endurance in athletes habituated to caffeine. Methods: The study included 16 healthy strength-trained male athletes (age = 24.2 ± 4.2 years, body mass = 79.5 ± 8.5 kg, body mass index (BMI) = 24.5 ± 1.9, bench press 1RM = 118.3 ± 14.5 kg). All participants were habitual caffeine consumers (4.9 ± 1.1 mg/kg/b.m., 411 ± 136 mg of caffeine per day). This study had a randomized, crossover, double-blind design, where each participant performed three experimental sessions after ingesting either a placebo (PLAC) or 9 mg/kg/b.m. (CAF-9) and 11 mg/kg/b.m. (CAF-11) of caffeine. In each experimental session, participants underwent a 1RM strength test and a muscle endurance test in the bench press exercise at 50% 1RM while power output and bar velocity were measured in each test. Results: A one-way repeated measures ANOVA revealed a significant difference between PLAC, CAF-9, and CAF-11 groups in peak velocity (PV) (p = 0.04). Post-hoc tests showed a significant decrease for PV (p = 0.04) in the CAF-11 compared to the PLAC group. No other changes were found in the 1RM or muscle endurance tests with the ingestion of caffeine. Conclusion: The results of the present study indicate that high acute doses of CAF (9 and 11 mg/kg/b.m.) did not improve muscle strength nor muscle endurance in athletes habituated to this substance.
Background: The main objective of the current investigation was to evaluate the effects of caffeine on power output and bar velocity during an explosive bench press throw in athletes habituated to caffeine. Methods: Twelve resistance trained individuals habituated to caffeine ingestion participated in a randomized double-blind experimental design. Each participant performed three identical experimental sessions 60 min after the intake of a placebo, 3, and 6 mg/kg/b.m. of caffeine. In each experimental session, the participants performed 5 sets of 2 repetitions of the bench press throw (with a load equivalent to 30% repetition maximum (RM), measured in a familiarization trial) on a Smith machine, while bar velocity and power output were registered with a rotatory encoder. Results: In comparison to the placebo, the intake of caffeine increased mean bar velocity during 5 sets of the bench press throw (1.37 ± 0.05 vs. 1.41 ± 0.05 and 1.41 ± 0.06 m/s for placebo, 3, and 6 mg/kg/b.m., respectively; p < 0.01), as well as mean power output (545 ± 117 vs. 562 ± 118 and 560 ± 107 W; p < 0.01). However, caffeine was not effective at increasing peak velocity (p = 0.09) nor peak power output (p = 0.07) during the explosive exercise. Conclusion: The acute doses of caffeine before resistance exercise may increase mean power output and mean bar velocity during the bench press throw training session in a group of habitual caffeine users. Thus, caffeine prior to ballistic exercises enhances performance during a power-specific resistance training session.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.