Background: Mali is one of the most important livestock producers of the Sahel region of Africa. A high frequency of bovine tuberculosis (BTB) has been reported but surveillance and control schemes are restricted to abattoir inspections only. The objective of this study was to conduct, for the first time, molecular characterisation of Mycobacterium bovis strains isolated from cattle slaughtered at the Bamako abattoir. Of 3330 animals screened only 60 exhibited gross visible lesions. From these animals, twenty strains of M. bovis were isolated and characterised by spoligotyping.
Highlights
Brucellosis is endemically established among dairy herds in West and Central Africa.
Brucella
spp. infection is present at high levels in dairy herds in Lomé and Bamako.
Brucellosis poses a public health concern in dairy chains of West and Central Africa.
Brucellosis control programs are urgently needed in West and Central Africa.
Bovine tuberculosis (bTB) is endemic in cattle in Ethiopia, a country that hosts the largest national cattle herd in Africa. The intensive dairy sector, most of which is peri-urban, has the highest prevalence of disease. Previous studies in Ethiopia have demonstrated that the main cause is
Mycobacterium bovis
, which has been investigated using conventional molecular tools including deletion typing, spoligotyping and Mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR). Here we use whole-genome sequencing to examine the population structure of
M. bovis
in Ethiopia. A total of 134
M
.
bovis
isolates were sequenced including 128 genomes from 85 mainly dairy cattle and six genomes isolated from humans, originating from 12 study sites across Ethiopia. These genomes provided a good representation of the previously described population structure of
M. bovis
, based on spoligotyping and demonstrated that the population is dominated by the clonal complexes African 2 (Af2) and European 3 (Eu3). A range of within-host diversity was observed amongst the isolates and evidence was found for both short- and long-distance transmission. Detailed analysis of available genomes from the Eu3 clonal complex combined with previously published genomes revealed two distinct introductions of this clonal complex into Ethiopia between 1950 and 1987, likely from Europe. This work is important to help better understand bTB transmission in cattle in Ethiopia and can potentially inform national strategies for bTB control in Ethiopia and beyond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.