Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ intermediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies.
Objective. Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that principally attacks synovial joints. However, accelerated atherosclerosis and increased cardiovascular morbidity and mortality are major clinical consequences of endothelial dysfunction in RA patients. Tumor necrosis factor ␣ (TNF␣) is the major mediator of inflammation in RA, related to vascular injury by targeting VE-cadherin, an endothelium-specific adhesion molecule of vital importance for endothelium integrity and angiogenesis. We undertook this study to examine the mechanisms regulating VE-cadherin processing by TNF␣ and their occurrence in RA.Methods. Human umbilical vein endothelial cells were used in primary culture and treated with recombinant TNF␣ to study VE-cadherin cleavage. Cell lysates and conditioned media were analyzed by Western blotting for VE-cadherin cytoplasmic domain and extracellular domain (VE-90) generation, respectively. VE-90 was analyzed at baseline and at the 1-year followup in sera from 63 RA patients (from the Very Early Rheumatoid Arthritis cohort) with disease duration of <6 months.Results. TNF␣ induced a time-dependent shedding of VE-90 in cell media. This effect was prevented by tyrosine kinase inhibitors (genistein and PP2) or by knocking down Src kinase. In contrast, tyrosine phosphatase blockade enhanced VE-cadherin cleavage, confirming the requirement of tyrosine phosphorylation processes. In addition, using the matrix metalloproteinase (MMP) activator APMA and the MMP inhibitor GM6001, we demonstrated that MMPs are involved in TNF␣-induced VE-cadherin cleavage. Of major importance, VE-90 was detected in sera from the 63 RA patients and was positively correlated with the Disease Activity Score at baseline and after 1-year followup.Conclusion. These findings provide the first evidence of VE-cadherin proteolysis upon TNF␣ stimulation and suggest potential clinical relevance of soluble VE-cadherin in management of RA.
Taking into account the structure activity relationship information given by our previous studies, we designed and synthesized a small library of pyrazolylureas and imidazopyrazolecarboxamides fluorinated on urea moiety and differently decorated on pyrazole nucleus. All compounds were preliminary screened by Western blotting technique to evaluate their activity on MAPK and PI3K pathways by monitoring ERK1/2, p38MAPK and Akt phosphorylation, and also screened with a wound healing assay to assess their capacity in inhibiting endothelial cell migration, using human umbilical vein endothelial cells stimulated with VEGF. Pyrazoles and imidazopyrazoles did not show the same activity profile. SAR consideration showed that specific substituents and their position in pyrazole nucleus, as well as the type of substituent on the phenylurea moiety play a pivotal role in determining increase or decrease of kinases phosphorylation. On the other hand the loss of flexibility in imidazopyrazole derivatives is responsible for activity potentiation. Screening of the compound library for inhibition of endothelial cell migration, a function required for angiogenesis, showed significant activity for compound 3. This compound might interfere with cell migration by modulating the activity of different upstream target kinases. Therefore, compound 3 represents a potential inhibitor of angiogenesis. Furthermore, it may be used as a tool to identify unknown mediators of endothelial migration and thereby unveiling new therapeutic targets for controlling pathological angiogenesis in diseases such as cancers.
Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.