Summary. We study a Life-like cellular automaton rule B2/S2345 where a cell in state '0' takes state '1' if it has exactly two neighbors in state '1' and the cell remains in the state '1' if it has between two and five neighbors in state '1.' This automaton is a discrete analog spatially extended chemical media, combining both properties of sub-excitable and precipitating chemical media. When started from random initial configuration B2/S2345 automaton exhibits chaotic behavior. Configurations with low density of state '1' show emergence of localized propagating patterns and stationary localizations. We construct basic logical gates and elementary arithmetical circuits by simulating logical signals with mobile localizations reaction propagating geometrically restricted by stationary non-destructible localizations. Values of Boolean variables are encoded into two types of patterns -symmetric (False) and asymmetric (True) patterns -which compete for the 'empty' space when propagate in the channels. Implementations of logical gates and binary adders are illustrated explicitly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.