International audience
The aboveground biomass estimation is an important question in the scope of Reducing Emission from Deforestation and Forest Degradation (REDD framework of the UNCCC). It is particularly challenging for tropical countries because of the scarcity of accurate ground forest inventory data and of the complexity of the forests. Satellite-borne remote sensing can help solve this problem considering the increasing availability of optical very high spatial resolution images that provide information on the forest structure via texture analysis of the canopy grain. For example, the FOTO (FOurier Texture Ordination) proved relevant for forest biomass prediction in several tropical regions. It uses PCA and linear regression and, in this paper, we suggest applying classification methods such as k-NN (k-nearest neighbors), SVM (support vector machines) and Random Forests to texture descriptors extracted from images via Fourier spectra. Experiments have been carried out on simulated images produced by the software DART (Discrete Anisotropic Radiative Transfer) in reference to information (3D stand mockups) from forests of DRC (Democratic Republic of Congo), CAR (Central African Republic) and Congo. On this basis, we show that some classification techniques may yield a gain in prediction accuracy of 18 to 20%
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.