New solid supports are described which allow the direct synthesis of oligonucleotides bearing either cholesterol or acridine at the 3'-terminus. A stereochemically defined amino diol was prepared by reduction of N-Cbz-hydroxy-L-proline. This linker molecule was first acylated with the desired conjugate molecule, then protected as the dimethoxytrityl ether. The remaining secondary hydroxyl group was succinylated and immobilized on a controlled-pore glass support. 3'-Modified oligodeoxynucleotides (ODNs) were prepared from these supports by using standard phosphoramidite coupling and deprotection conditions. A cholesterol-modified support was prepared from cholesterol chloroformate and the amino diol linker. Two types of acridine-modified solid supports were prepared from acridine tetrafluorophenyl esters with linker arms of different length. In an alternative synthesis of 3'-derivatized ODNs, these active esters were also utilized for acylation of a 3'-amine-modified ODN. A thermal denaturation study was done to determine the effect of the different linker arms on hybridization to a complementary ODN target. Facile synthesis and purification of the 3'-modified ODNs makes these functionalized solid supports especially useful for preparation of oligonucleotides bearing these and other modifications.
A new controlled-pore glass (CPG) support is described that allows for the direct synthesis of oligonucleotides bearing a 3'-aminohexyl tail. This solid support (AH-CPG) exhibits superior performance as compared to a commercially available 3'-amine CPG. The AH-CPG is prepared from 6-aminohexan-1-ol with a unique protecting group for the amine that also functions as the site of attachment to the CPG. A 3'-amine-tailed oligodeoxynucleotide (ODN) was prepared from this support using standard phosphoramidite coupling and deprotection conditions. The 3'-amine-tailed ODN was subsequently modified with an acridinylpropionic acid tetrafluorophenyl ester. Facile synthesis of the AH-CPG and the stability of the deprotected product makes this functionalized solid support especially useful for preparation of oligonucleotides bearing 3'-amine tails and other modifications.
A new procedure for the preparation of the antiviral and antitumor agent 3-deazaguanine (1) and its metabolite 3-deazaguanosine (2) has been developed by reacting methyl 5(4)-(cyanomethyl) imidazole-4(5)-carboxylate (4) and 5-(cyanomethyl)-1- (2,3,5-tri-O-benzoyl-beta-D-ribofuranosyl)imidazole-4-carboxylate (6), respectively, with hydrazine. The 3-deazaguanosine 3',5'-cyclic phosphate (13) was prepared from 5-(cyanomethyl)-1-beta-D-ribofuranosyl-imidazole-4-carboxamide 5'-phosphate. Glycosylation of the trimethylsilyl 4 with 1-O-methyl-2-deoxy-3,5-di-O-p-toluoyl-D-ribofuranose in the presence of trimethylsilyl trifluoromethanesulfonate gave the corresponding N-1 and N-3 glycosyl derivatives with alpha-configuration (18 and 20) as the major products, along with minor amounts of the beta-anomers (19 and 21). However, glycosylation of the sodium salt of 4 with 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofurano se (17) gave exclusively the beta-anomers (19 and 21) in good yield. Base-catalyzed ring closure of these imidazole nucleosides gave 2'-deoxy-3-deazaguanosine (29), the alpha-anomer 28, and the corresponding N-3 positional isomers 27 and 26. The site of glycosylation and the anomeric configuration of these nucleosides have been assigned on the basis of 1' NMR and UV spectral characteristics and by single-crystal X-ray analysis for 27-29. In a preliminary screening, several of these compounds have demonstrated significant broad-spectrum antiviral activity against certain DNA and RNA viruses in vitro, as well as moderate activity against L1210 and P388 leukemia in cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.