This manuscript introduces a discrete technique to estimate the solution of a double-fractional two-component Bose–Einstein condensate. The system consists of two coupled nonlinear parabolic partial differential equations whose solutions are two complex functions, and the spatial fractional derivatives are interpreted in the Riesz sense. Initial and homogeneous Dirichlet boundary data are imposed on a multidimensional spatial domain. To approximate the solutions, we employ a finite difference methodology. We rigorously establish the existence of numerical solutions along with the main numerical properties. Concretely, we show that the scheme is consistent in both space and time as well as stable and convergent. Numerical simulations in the one-dimensional scenario are presented in order to show the performance of the scheme. For the sake of convenience, A MATLAB code of the numerical model is provided in the appendix at the end of this work.
In this work, we introduce and theoretically analyze a relatively simple numerical algorithm to solve a double-fractional condensate model. The mathematical system is a generalization of the famous Gross–Pitaevskii equation, which is a model consisting of two nonlinear complex-valued diffusive differential equations. The continuous model studied in this manuscript is a multidimensional system that includes Riesz-type spatial fractional derivatives. We prove here the relevant features of the numerical algorithm, and illustrative simulations will be shown to verify the quadratic order of convergence in both the space and time variables.
This manuscript studies a double fractional extended p-dimensional coupled Gross–Pitaevskii-type system. This system consists of two parabolic partial differential equations with equal interaction constants, coupling terms, and spatial derivatives of the Riesz type. Associated with the mathematical model, there are energy and non-negative mass functions which are conserved throughout time. Motivated by this fact, we propose a finite-difference discretization of the double fractional Gross–Pitaevskii system which inherits the energy and mass conservation properties. As the continuous model, the mass is a non-negative constant and the solutions are bounded under suitable numerical parameter assumptions. We prove rigorously the existence of solutions for any set of initial conditions. As in the continuous system, the discretization has a discrete Hamiltonian associated. The method is implicit, multi-consistent, stable and quadratically convergent. Finally, we implemented the scheme computationally to confirm the validity of the mass and energy conservation properties, obtaining satisfactory results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.