Covid-19 causes one of the most alarming global health and economic crises in modern times. Countries around the world establish different preventing measures to stop or control Covid-19 spread. The goal of this paper is to present methods for the evaluation of indoor air quality in public transport to assess the risk of contracting Covid19. The first part of the paper involves investigating the relationship between Covid-19 and various factors affecting indoor air quality. The focus of this paper relies on exploring existing methods to estimate the number of occupants in public transport. It is known that increased occupancy rate increases the possibility of contamination as well as indoor carbon dioxide concentration. Wireless data collection schemes will be defined that can collect data from public transportation. Collected data are envisioned to be stored in the cloud for data analytics. We will present novel methods to analyze the collected data by considering the historical data and estimate the virus contagion risk level for each public transportation vehicle in service. The methodology is expected to be applicable for other airborne diseases as well. Real-time risk levels of public transportation vehicles will be available through a mobile application so that people can choose their mode of transportation accordingly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.