Producing tremendous amounts of stress and financial burden on the global patient population and healthcare systems around the world, most current modalities of treatment for musculoskeletal ailments often do not address the etiopathogenetic causes of these disorders. Regenerative medicine for musculoskeletal disorders relies on orthobiologics derived from either allogenic or autologous sources. Multiple drawbacks are associated with autologous sources, including donor-site morbidity, a dearth of studies, and variability in both patient reported and clinical/functional outcomes. On the other hand, allogenic sources address several of these concerns, and continue to be a suitable source of mesenchymal stem cells (MSCs). This review qualitatively reports both the preclinical and clinical outcomes of publications studying the applications of umbilical cord (-derived Wharton’s jelly), amniotic suspension allograft, amniotic membrane, and amniotic fluid in musculoskeletal medicine. A systematic review was conducted utilizing the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines on studies published between January 2010 and October 2022 that used allogeneic perinatal tissues. Further randomized controlled clinical studies are necessary to properly evaluate the safety and efficacy of these tissues in orthopedic surgery.
Background Musculoskeletal ailments impact the lives of millions of people, and at times necessitate surgery followed by physiotherapy, drug treatments, or immobilization. Regenerative musculoskeletal medicine has undergone enormous progress over the last few decades. Sources of tissues used for regenerative medicine purposes can be grouped into autologous or allogenic. Although autologous sources are promising, there is a wide range of limitations with the treatment, including the lack of randomized controlled studies for orthopaedic conditions, donor site morbidity, and highly variable outcomes for patients. Allogenic sources bypass some of these shortcomings and are a promising source for orthopaedic regenerative medicine applications. Methods A systematic search will be performed using PubMed, Elsevier, ScienceDirect, and Google Scholar databases for articles published in English before May 2022. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and guidelines will be used. Studies will be eligible if they apply to acute and chronic orthopaedic musculoskeletal complications or animal or human disease models. Publications must include the use of MSCs and/or tissue obtained from amniotic/chorionic membrane, amniotic fluid, umbilical cord, and/or umbilical cord-derived Wharton’s jelly as an intervention. Placebos, noninjury models, acute injury models, non-injury models, and gold standard treatments will be compared. The study selection will be performed by two independent reviewers using a dedicated reference management software. Data synthesis and meta-analysis will be performed separately for preclinical and clinical studies. Discussion The results will be published in relevant peer-reviewed scientific journals. Investigators will present results at national or international conferences. Trial registration: The Protocol will be registered on PROSPERO international prospective register of systematic reviews prior to commencement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.