Many studies have demonstrated covariation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this covariation reflects simplification of task performance by the nervous system so that muscles with similar contributions to task variables are controlled together. Alternatively, this covariation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing covariation patterns in quadriceps muscle activity during locomotion in rats. The three monoarticular quadriceps muscles (vastus medialis [VM], vastus lateralis [VL], and vastus intermedius [VI]) produce knee extension and so have identical contributions to task performance; the biarticular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle covariation is related to similarity of muscle actions on task variables, we found that the covariation between VM and VL was stronger than their covariations with RF. However, covariation between VM and VL was also stronger than their covariations with VI. Since all vastii have identical actions on task variables, this finding suggests that covariation between muscle activity is not solely driven by simplification of overt task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: Since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle covariations and their role in movement control.
Sport-related injuries to articular structures often alter the sensory information conveyed by joint structures to the nervous system. However, the role of joint sensory afferents in motor control is still unclear. Here we evaluate the role of knee joint sensory afferents in the control of quadriceps muscles, hypothesizing that such sensory information modulates control strategies that limit patellofemoreal joint loading. We compared locomotor kinematics and muscle activity before and after inhibition of knee sensory afferents by injection of lidocaine into the knee capsule of rats. We evaluated whether this inhibition reduced the strength of correlation between the activity of vastus medialis (VM) and vastus lateralis (VL) both across strides and within each stride, coordination patterns that limit net mediolateral patellofemoral forces. We also evaluated whether this inhibition altered correlations amongst the other quadriceps muscles activity, the time-profiles of individual EMG envelopes, or movement kinematics. Neither the EMG envelopes nor limb kinematics were affected by the inhibition of knee sensory afferents. This perturbation also did not affect the correlations between VM and VL, suggesting that the regulation of patellofemoral joint loading is mediated by different mechanisms. However, inhibition of knee sensory afferents caused a significant reduction in the correlation between vastus intermedius (VI) and both VM and VL across, but not within, strides. Knee joint sensory afferents may therefore modulate the coordination between the vasti muscles but only at coarse time scales. Injuries compromising joint afferents might result in altered muscle coordination, potentially leading to persistent internal joint stresses and strains.
Many studies have demonstrated co-variation between muscle activations during behavior, suggesting that muscles are not controlled independently. According to one common proposal, this co-variation reflects simplification of task performance by the nervous system, so that muscles with similar contributions to task variables are controlled together. Alternatively, this co-variation might reflect regulation of low-level aspects of movements that are common across tasks, such as stresses within joints. We examined these issues by analyzing co-variation patterns in quadriceps muscle activity during locomotion in rats. The three mono-articular quadriceps muscles (vastus medialis, VM; vastus lateralis, VL; vastus intermedius, VI) produce knee extension and so have identical contributions to task performance; the bi-articular rectus femoris (RF) produces an additional hip flexion. Consistent with the proposal that muscle co-variation is related to similarity of muscle actions on task variables, we found that the co-variation between VM and VL was stronger than their co-variations with RF. However, co-variation between VM and VL was also stronger than their co-variations with VI. Since all vastii have identical actions on task variables, this finding suggests that co-variation between muscle activity is not solely driven by simplification of task performance. Instead, the preferentially strong covariation between VM and VL is consistent with the control of internal joint stresses: since VM and VL produce opposing mediolateral forces on the patella, the high positive correlation between their activation minimizes the net mediolateral patellar force. These results provide important insights into the interpretation of muscle co-variations and their role in movement control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.