This work presents a brief introduction to the blind source separation using independent component analysis (ICA) techniques. The main objective of the blind source separation (BSS) is to obtain, from observations composed by different mixed signals, those different signals that compose them. This objective can be reached using two different techniques, the spatial and the statistical one. The first one is based on a microphone array and depends on the position and separation of them. It also uses the directions of arrival (DOA) from the different audio signals. On the other hand, the statistical separation supposes that the signals are statistically independent, that they are mixed in a linear way and that it is possible to get the mixtures with the right sensors (Hyvärinen, Karhunen & Oja, 2001) (Parra, 2002). The last technique is the one that is going to be studied in this work. It is due to this technique is the newest and is in a continuous development. It is used in different fields such as natural language processing (Murata, Ikeda & Ziehe, 2001) (Saruwatari, Kawamura & Shikano, 2001), bioinformatics, image processing (Cichocki & Amari, 2002) and in different real life applications such as mobile communications (Saruwatari, Sawai, Lee, Kawamura, Sakata & Shikano, 2003). Specifically, the technique that is going to be used is the Independent Component Analysis (ICA). ICA comes from an old technique called PCA (Principal Component Analysis) (Hyvärinen, Karhunen & Oja, 2001) (Smith, 2006). PCA is used in a wide range of scopes such as face recognition or image compression, being a very common technique to find patterns in high dimension data. The BSS problem can be of two different ways; the first one is when the mixtures are linear. It means that the data are mixed without echoes or reverberations, while the second one, due to these conditions, the mixtures are convolutive and they are not totally independent because of the signal propagation through dynamic environments. It is the “Cocktail party problem”. Depending on the mixtures, there are several methods to solve the BSS problem. The first case can be seen as a simplification of the second one. The blind source separation based on ICA is also divided into three groups; the first one are those methods that works in the time domain, the second are those who works in the frequency domain and the last group are those methods that combine frequency and time domain methods. A revision of the technique state of these methods is proposed in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.