Electron-electron (e-e) interactions assume a cardinal role in solid-state physics. Quantifying the e-e scattering length is hence critical. In this paper we show that the mesoscopic phenomenon of transverse magnetic focusing (TMF) in two-dimensional electron systems forms a precise and sensitive technique to measure this length scale. Conversely we quantitatively demonstrate that e-e scattering is the predominant effect limiting TMF amplitudes in high-mobility materials. Using high-resolution kinetic simulations, we show that the TMF amplitude at a maximum decays exponentially as a function of the e-e scattering length, which leads to a ready approach to extract this length from the measured TMF amplitudes. The approach is applied to measure the temperature-dependent e-e scattering length in high-mobility GaAs/AlGaAs heterostructures. The simulations further reveal current vortices that accompany the cyclotron orbits - a collective phenomenon counterintuitive to the ballistic transport underlying a TMF setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.