In this article, the analytical solutions for static of bending analysis of functionally graded sandwich plates using four-variable high order shear-deformation theory is presented. During manufacture of these plates, defects such as porosities can appear. The objective of this paper is to develop a model to employ the new function for analysis the static of functionally graded sandwich plates. However, the material properties of the sandwich plate varies according to a power law P-FGM form through the thickness coordinate depending on the volume fraction of the constituent material. Equilibrium and stability equations are derived based on the present theory. The solution of the problem is derived by using Navier's technique. The influences of many sandwich plate parameters such of the variation and influences of porosity coefficient, aspect ratio, side-to-thickness ratio and exponent volume fraction will be investigated.
This work is carried out to investigate the performance of concrete reinforced with plastic fibers obtained locally (bottle waste as fiber). Bottle waste plastic was chosen because it is being thrown after single use and cause environmental problem. One way to recycle wasted bottles plastic is grinded into irregular fiber. Then, it was incorporate with the concrete and tests the performance of the concrete. The study was conducted using cylindrical and rectangular (cube) mold of concrete to investigate the performance of the concrete in term of mechanical properties. In this research, the mechanical properties that were measured are compressive strength, splitting tensile strength and flexural strength. The results revealed that the presence of plastic fiber in concrete will increase the concrete performance, as well as the concrete bond strength is improved and the cracks in the concrete decrease the use of fibers and reduce plastic waste.
In recent years, fiber-reinforced polymers (FRPs) materials have shown great potential as materials for repair and reinforced concrete structures such as beams or columns by externally bonding FRP sheet(s) onto the surface of substrate concrete structures. However, the performance of FRP systems exposed to fire is a serious concern due to the combustibility of FRPs. This study introduces the results of an experimental investigation on the behavior of the circular columns of concrete under a load of axial compression, confined by an envelope of composite materials (carbon fiber and glass fiber) and protected by a layer of mortar cement or plaster coating, after they have been subjected at various temperature (23, 120, and 350°C). The specific objectives of this study are verifying the applicability and the effectiveness of the proposed technique to improve the behavior of concrete in fire resistance and evaluate the effect of composite materials and the layer coating type used. The results indicated that protecting heat circular confined columns, with a layer of mortar cement or plaster has a significant effect on the axial strength and the ductility. It was shown that the ultimate load and axial strain of heated columns can be restored up to the original level or greater than those of unheated columns. However, the effect of a layer of plaster is more significant than a layer of mortar cement. So this coating system would enhance fire resistance of the FRP, safety and reliability of FRP reinforced concrete structures.
The paper examines a static bending of porous functional plates (FGP) and rectangular plate solutions, based on an underlying high-order shear deformation theory. The proposed high-order shear deformation theory, as opposed to other theories, includes four unknowns. For this reason, a new shear strain function is considered. The technique of Navier is used in closed-form FGP solutions. Results of deflections and stresses are presented for simply supported border conditions. Current figures are contrasted with the non-poreous plate deflecting solutions and the literature's stresses. Effects of different parameters, including thickness, gradient index and porosity of FGM plates, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.