In view of growing body of evidence substantiating the role of aberrations in one-carbon metabolism in the pathophysiology of breast cancer and lack of studies on gene-gene interactions, we investigated the role of dietary micronutrients and eight functional polymorphisms of one-carbon metabolism in modulating the breast cancer risk in 244 case-control pairs of Indian women and explored possible gene-gene interactions using Multifactor dimensionality reduction analysis (MDR). Dietary micronutrient status was assessed using the validated Food Frequency Questionnaire. Genotyping was done for glutamate carboxypeptidase II (GCPII) C1561T, reduced folate carrier (RFC)1 G80A, cytosolic serine hydroxymethyltransferase (cSHMT) C1420T, thymidylate synthase (TYMS) 5'-UTR tandem repeat, TYMS 3'-UTR ins6/del6, methylenetetrahydrofolate reductase (MTHFR) C677T, methyltetrahydrofolate-homocysteine methyltransferase (MTR) A2756G, methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR) A66G polymorphisms by using the PCR-RFLP/AFLP methods. Low dietary folate intake (P < 0.001), RFC1 G80A (OR: 1.38, 95% CI 1.06-1.81) and MTHFR C677T (OR: 1.74 (1.11-2.73) were independently associated with the breast cancer risk whereas cSHMT C1420T conferred protection (OR: 0.72, 95% CI 0.55-0.94). MDR analysis demonstrated a significant tri-variate interaction among RFC1 80, MTHFR 677 and TYMS 5'-UTR loci (P (trend) < 0.02) with high-risk genotype combination showing inflated risk for breast cancer (OR 4.65, 95% CI 1.77-12.24). To conclude, dietary as well as genetic factors were found to influence susceptibility to breast cancer. Further, the current study highlighted the importance of multi-loci analyses over the single-locus analysis towards establishing the epistatic interactions between loci of one-carbon metabolism modulate susceptibility to the breast cancer.
To optimize the warfarin dose, a population-specific pharmacogenomic algorithm was developed using multiple linear regression model with vitamin K intake and cytochrome P450 IIC polypeptide9 (CYP2C9(*)2 and (*)3), vitamin K epoxide reductase complex 1 (VKORC1(*)3, (*)4, D36Y and -1639 G>A) polymorphism profile of subjects who attained therapeutic international normalized ratio as predictors. New algorithm was validated by correlating with Wadelius, International Warfarin Pharmacogenetics Consortium and Gage algorithms; and with the therapeutic dose (r=0.64, P<0.0001). New algorithm was more accurate (Overall: 0.89 vs 0.51, warfarin resistant: 0.96 vs 0.77 and warfarin sensitive: 0.80 vs 0.24), more sensitive (0.87 vs 0.52) and specific (0.93 vs 0.50) compared with clinical data. It has significantly reduced the rate of overestimation (0.06 vs 0.50) and underestimation (0.13 vs 0.48). To conclude, this population-specific algorithm has greater clinical utility in optimizing the warfarin dose, thereby decreasing the adverse effects of suboptimal dose.
The authors investigated the role of dietary micronutrients and eight functional polymorphisms of one-carbon metabolism in modulating oxidative stress in sporadic breast cancer. PCR-restriction fragment length polymorphism (RFLP) and PCR-amplified fragment length polymorphism (AFLP) methods were used for genetic analysis in 222 sporadic breast cancer cases and 235 controls. Standardized food frequency questionnaire was used for dietary micronutrient assessment. 8-oxo-2'-deoxyguanosine (8-oxodG), folate, and estradiol were estimated using commercial ELISA kits. Reverse-phase HPLC coupled with fluorescence detector was used for plasma homocysteine analysis. Total glutathione was estimated using Ellman's method. Reduced folate carrier 1 (RFC1) G80A and methylenetetrahydrofolate reductase (MTHFR) C677T were associated with risks of 1.34 (95% CI 1.01-1.79)- and 1.84 (95% CI 1.14-3.00)-folds, respectively, for sporadic breast cancer while cytosolic serine hydroxymethyl transferase (cSHMT) C1420T was associated with reduced risk (OR 0.71, 95% CI 0.53-0.94). Significant increase in plasma 8-oxo-2'-deoxyguanosine (P < 0.004) and homocysteine (P < 0.0001); and significant decrease in total glutathione (P < 0.01) and dietary folate (P = 0.006) was observed in cases than in controls. Oxidative DNA damage showed direct association with menopause (P = 0.02), RFC1 G80A (P < 0.05) and homocysteine (P < 0.0001); and inverse association with dietary folate (P < 0.0001), plasma folate (P < 0.0001), cSHMT C1420T (P < 0.05) and glutathione (P < 0.001). To conclude, the aberrations in one-carbon metabolism induce oxidative stress in sporadic breast cancer either by affecting the folate pool or by impairing remethylation.
We have earlier demonstrated the role of aberrant one-carbon metabolism in the etiology of breast cancer. In the current study, we examine the clinical utility of these factors in predicting the subtype of breast cancer and as indicators of disease progression. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) and PCR-amplified fragment length polymorphism (AFLP) approaches were used for genetic analysis. Plasma folate and homocysteine were measured using Axsym folate kit and reverse phase HPLC, respectively. Multiple linear regression models were used to test the predictability of disease progression. Luminal A subtype was associated with late age of onset, higher body mass index and lack of family history of breast cancer. Thymidylate synthase (TYMS) 5'-UTR 28 bp tandem repeat (OR: 2.09, 95% CI: 1.05-4.16) and methylene tetrahydrofolate reductase (MTHFR) C677T (OR: 4.10, 95% CI: 1.40-11.95) were strongly associated with Luminal B. Reduced folate carrier (RFC1) G80A (OR: 2.92, 95% CI: 1.22-6.97) and methionine synthase (MTR) A2756G (OR: 4.71, 95% CI: 1.66-13.31) polymorphisms were associated with LuminA-HH subtype while MTHFR C677T showed association with HER-enriched (OR: 30.41, 95% CI: 6.47-142.91). Cytosolic serine hydroxymethyltransferase (cSHMT) conferred protection against basal-like breast cancer (OR: 0.47, 95% CI: 0.22-0.98). HER-enriched and basal-like subtypes showed positive association with familial breast cancer and inverse association with plasma folate. Hyperhomocysteinemia was observed in Luminal B and basal-like subtypes. Multiple linear regression models of aberrant one-carbon metabolism were found to be moderate predictors of breast cancer grade (area under the receiver operating characteristic curve, C = 0.72, 95% CI: 0.58-0.87, P = 0.008). To conclude, aberrations in one-carbon metabolism predict the subtype of breast cancer and disease progression.
The aim of this case-control study is to explore the role of aberrations in xenobiotic metabolism in inducing oxidative DNA damage and altering the susceptibility to breast cancer. Cytochrome P4501A1 (CYP1A1) m1 (OR: 1.41, 95% CI 1.08-1.84), CYP1A1 m4 (OR: 5.13, 95% CI 2.68-9.81), Catecholamine-O-methyl transferase (COMT) H108L (OR: 1.49, 95% CI 1.16-1.92), and glutathione S-transferase (GST) T1 null (OR: 1.68, 95% CI 1.09-2.59) variants showed association with breast cancer risk. Reduced folate carrier 1 (RFC1) 80A/CYP1A1 m1/CYP1A1 m4 and RFC1 80A/thymidylate synthase (TYMS) 5'-UTR 2R/methionine synthase (MTR) 2756G/COMT 108L genetic combinations were found to inflate breast cancer risk under the conditions of low dietary folate (345 ± 110 vs. 379 ± 139 μg/day) and low plasma folate (6.81 ± 1.25 vs. 7.09 ± 1.26 ng/ml) by increasing plasma 8-oxo-2'-deoxyguanosine (8-oxodG). This increase in 8-oxodG is attributed to low methionine (49.38 ± 23.74 vs. 53.90 ± 23.85 μmol/l); low glutathione (378 ± 242 vs. 501 ± 126 μmol/l) and GSTT1 null variant; and hypermethylation of CpG island of extracellular-superoxide dismutase (EC-SOD) (92.78 ± 11.49 vs. 80.45 ± 9.86%), which impair O-methylation of catechol estrogens to methoxy estrogens, conjugation of glutathione to semiquinones/quinones and free radical scavenging respectively. Our results suggest cross-talk between one-carbon metabolism and xenobiotic metabolism influencing oxidative DNA damage and susceptibility to breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.