An edge intelligence-aided Internet-of-Things (IoT) network has been proposed to accelerate the response of IoT services by deploying edge intelligence near IoT devices. The transmission of data from IoT devices to the edge nodes leads to large network traffic in the wireless connections. Federated Learning (FL) is proposed to solve the high computational complexity by training the model locally on IoT devices and sharing the model parameters in the edge nodes. This paper focuses on developing an efficient integration of joint edge intelligence nodes depending on investigating an energy-efficient bandwidth allocation, computing Central Processing Unit (CPU) frequency, optimization transmission power, and the desired level of learning accuracy to minimize the energy consumption and satisfy the FL time requirement for all IoT devices. The proposal efficiently optimized the computation frequency allocation and reduced energy consumption in IoT devices by solving the bandwidth optimization problem in closed form. The remaining computational frequency allocation, transmission power allocation, and loss could be resolved with an Alternative Direction Algorithm (ADA) to reduce energy consumption and complexity at every iteration of FL time from IoT devices to edge intelligence nodes. The simulation results indicated that the proposed ADA can adapt the central processing unit frequency and power transmission control to reduce energy consumption at the cost of a small growth of FL time.INDEX TERMS Internet-of-things, federated learning, energy consumption, edge nodes, central processing unit.
With the rapid adoption of the Internet of Things, it is necessary to go beyond fifth-generation applications and apply stringent high reliability and low latency requirements, closely related to strict delay demands. These requirements support massive network connectivity for multiple Internet of Things devices. Hence, in this paper, we optimize energy efficiency and achieve quality-of-service requirements by mitigating co-channel interference, performing efficient power control of transmitters, and harvesting energy using timeslot exchanges. Due to a nonconvex optimization problem, we propose an iterative algorithm for power allocation and time slot interchange to reduce the computational complexity. To achieve a high degree of ultra-reliability and low latency with quality-of-service-aware instantaneous reward under massive connectivity, we efficiently employ multiagent reinforcement learning by addressing the intelligent resource management problem via a novel Double Deep Q Network. The network prioritizes experience replay to exploit the best policy and maximize accumulative rewards. It also learns the optimal policy and enhances learning efficiency by maximizing its reward function to make decisions with high intelligence and guarantee strict ultra-reliability and low latency. The simulation result shows that the Double Deep Q Network with prioritized experience replay can guarantee stringent ultra-reliability and low latency. As a result, the cochannel interference between transmission links and the high-power consumption density associated with the massive connectivity of the Internet of Things devices are mitigated.INDEX TERMS Internet of things, beyond fifth-generation, energy efficiency, massive connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.