In cancer chemotherapy, metal-based complexes have been recognized as the most promising means of inhibiting cancer growth due to the successful application of cis-platin and its derivatives above many of the existing organic anticancer agents. The limitations in their rational design can be traced to the complexity of the mechanism of their operations, lack of proper knowledge of their targets and lack of force fields in docking packages to appropriately define the metal centre of the organometallic complexes. In this paper, some of the promising anticancer complexes of Ru(II) such as the rapta-based complexes formulated as [Ru(η6-p-cymene)L2(pta)] and those with unusual ligands are considered. CatB and kinases which have been experimentally confirmed as possible targets of the complexes are also predicted by the three methods as one of the most targeted receptors while TopII and HDAC7 are predicted by two and one of the methods as best targets. The interesting features of the binding of the complexes show that some of the complexes preferentially target specific macromolecules than the others, which is an indication of their specificity and possibility of their therapeutic combination without severe side effects that may come from competition for the same target. Also, introduction of unusual ligands is found to significantly improve the activities of most of the complexes studied. Strong correlations are observed for the predicted binding sites and the orientation of the complexes within the binding site by the three methods of docking. However there are disparities in the ranking of the complexes by the three method of docking, especially that of Glide.
The experimental UV and CV of five substituted 2-hydroxybenzophenones in solvents acetonitrile, n-dimethylformamide and dimethylsulfoxide are presented. Results obtained were used to determine their experimental highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and the results were compared to their theoretical model. The derivatives with an electron withdrawing group (EWG) have more favourable reduction potential, electron affinity, lower dipole moment, lower LUMO and HOMO energy levels and longer absorption λ max compared to those containing an electron donating group. Acetonitrile enhances the reduction potential especially for those of derivatives with EWG, leading to higher reduction potential compared to solvents DMF and DMSO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.