Quantitative analysis of the composition dependence of the concentration gradient of each species of macromolecule within a solution mixture at sedimentation equilibrium permits the quantitative characterization of self- and heterointeractions between sedimenting solutes. Sedimentation equilibrium experiments were conducted on solutions containing a trace concentration of FITC-labeled BSA in varying concentrations of Ficoll 70 and on solutions containing a trace concentration of FITC-labeled Ficoll 70 in varying concentrations of BSA. The equilibrium gradient of each solute component in each mixture was measured independently. Analysis of the resulting gradients resulted in evaluation of the dependence of the activity coefficient of Ficoll upon the concentrations of Ficoll and BSA at concentrations of up to 100 g/L and the dependence of the activity coefficient of BSA upon the concentrations of Ficoll and BSA at concentrations of up to 100 g/L. The activity coefficients of both species increase significantly with increasing Ficoll and BSA concentration and do not vary with temperature, to within the precision of measurement, over the temperature range of 5–37 °C, indicating that the dominant interaction between Ficoll molecules and between BSA and Ficoll molecules is repulsive and probably due to steric volume exclusion. The measured dependences may be accounted for quantitatively by a simple model in which BSA and Ficoll 70 are represented by equivalent rigid particles.
The interaction among each of three dilute “tracer” proteins (bovine serum albumin, superoxide dismutase, and ovomucoid) at a concentration of 2 mg/mL and each of two “crowder” proteins (ovomucoid and BSA) at concentrations up to 100 mg/mL was characterized by analysis of dependence of the equilibrium gradients of both tracer and crowder upon the concentration of crowder. The equilibrium gradients of both crowder proteins were found to be independent of temperature over the range 5–37 °C. The equilibrium gradients of tracer BSA and ovomucoid in the complementary crowder species were likewise found to be independent of temperature over this range, indicating that interaction among these tracers and crowders is predominantly repulsive and essentially entirely entropic in nature. The equilibrium gradient of tracer SOD in BSA was also found to be independent of temperature over this range, but the gradient of tracer SOD in ovomucoid depended significantly upon temperature in a manner indicating a significant enthalpic (attractive) component of the overall interaction between SOD and ovomucoid. The experimental data are analyzed using model-free expansions of the thermodynamic activity coefficients of tracer and crowder in powers of the concentration of crowder and using approximate statistical thermodynamic models based upon highly simplified descriptions of molecular structure and interactions. Detailed analysis of the results indicates a relatively small contribution of nonspecific attraction to the total protein–protein interaction, which is dominated by steric repulsion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.