Tributyltin, an organotin, is ubiquitous in the environment. The consumption of contaminated marine species leads to human dietary exposure to this compound. Tributyltin is an endocrine disruptor in many wildlife species and inhibits aromatase in mammalian placental and granulosa-like tumor cell lines. We investigated the effects of tributyltin chloride exposure on pregnancy outcome in the Sprague-Dawley rat. Timed pregnant rats were gavaged either with vehicle (olive oil) or tributyltin chloride (0.25, 2.5, 10, or 20 mg/kg) from days 0-19 or 8-19 of gestation. On gestational day 20, dams were sacrificed, and pregnancy outcome was determined. Tributyltin and its metabolites (dibutyltin, monobutyltin) were measured in maternal blood by gas chromatography. Both tributyltin and dibutyltin were present in maternal blood at approximately equal concentrations, whereas monobutyltin contributed minimally to total organotins. Organotin concentrations increased in a dose-dependent pattern in dams, independent of the window of exposure. Tributyltin chloride administration significantly reduced maternal weight gain only at the highest dose (20 mg/kg); a significant increase in post-implantation loss and decreased litter sizes, in addition to decreased fetal weights, was observed in this group. Tributyltin chloride exposure did not result in external malformations, nor was there a change in sex ratios. However, exposure to 0.25, 2.5, or 10 mg/kg tributyltin chloride from gestation days (GD) 0-19 resulted in a significant increase in normalized anogenital distances in male fetuses; exposure from days 8-19 had no effect. There was a dramatic increase in the incidence of low weight (< or =0.75 of the mean) fetuses after exposure to 20 mg/kg tributyltin chloride. Delayed ossification of the fetal skeleton was observed after in utero exposure to either 10 mg/kg or 20 mg/kg tributyltin chloride. Serum thyroxine and triiodothyronine levels were reduced significantly in dams exposed to 10 and 20 mg/kg tributyltin chloride throughout gestation; in dams treated with tributyltin from GD 8-19, serum thyroxine concentrations, but not triiodothyronine, were significantly decreased at both the 2.5 and 10 mg/kg exposures. Thus, maternal thyroid hormone homeostasis may be important in mediating the developmental toxicity of organotins.
Tributyltin (TBT) is an environmental contaminant commonly used in anti-fouling agents for boats, as well as a by-product from several industrial processes. It has been shown to accumulate in organisms living in areas with heavy maritime traffic thereby entering the food chain. Here, we determined the consequences of in utero exposure to TBT on the developing fetal gonads in the Sprague-Dawley rat. Timed pregnant rats were gavaged either with vehicle or TBT (0.25, 2.5, 10 or 20 mg/kg) from days 0 to 19 or 8 to 19 of gestation. On gestational day 20, dams were sacrificed; fetal testes and ovaries were processed for light (LM) or electron microscopic (EM) evaluation and RNA was prepared for gene expression profiling. At the highest doses of TBT the number of Sertoli cells and gonocytes was reduced, there were large intracellular spaces between Sertoli cells and gonocytes and there was an increased abundance of lipid droplets in the Sertoli cells; EM studies revealed abnormally dilated endoplasmic reticulum in Sertoli cells and gonocytes. In the intertubular region between adjacent interstitial cells, immunostaining for the gap junctional protein connexin 43 was strong in controls, whereas it was reduced or completely absent in treated rats. In the ovaries, TBT (20 mg/kg, days 0-19; 10 mg/kg, days 8-19) reduced the number of germ cells by 44% and 46%, respectively. On examining gene expression profiles in the testis, 40 genes out of 1176 tested were upregulated more than two-fold over control. While no genes were upregulated in the TBT exposed fetal ovary, eight genes were downregulated. In conclusion, in utero exposure to TBT resulted in gender-specific alterations in gonadal development and gene expression profiles suggesting that there may be different adaptive changes to toxicity in developing male and female rats.
Dietary exposure of Inuit people to a mixture of pesticides and polychlorinated biphenyls, or persistent organic pollutants (POPs), during pregnancy is a public health concern. We examined the consequences of administering the mixture of 28 POPs found in the Inuit diet (at doses representing 10-1000 times dietary levels) by gavage to pregnant Sprague-Dawley rats either during gestation days 0-19 or 8-19. The levels of individual components of the POPs mixture in the maternal liver were measured by high-resolution mass spectrometry. On gestation day 20, dams were sacrificed and pregnancy outcome determined. RNA isolated from maternal and fetal livers was 32P-labeled for gene expression profiling. The concentrations of individual POPs were increased in maternal livers of dams gavaged with the 1000x POPs mixture by 10- to 500-fold. While exposure to POPs had no significant effects on pregnancy outcome, dramatic changes were observed in the gene expression profiles of both the maternal and fetal livers. The gene expression profiles of maternal and fetal female and male liver were distinct with respect to the numbers of transcripts detected, the genes expressed exclusively in control or POPs-exposed livers, and those for which expression was up- or downregulated. While different genes were affected in each group, the overall consequence of POPs exposure on hepatic gene expression profiles was to decrease both the numbers of genes expressed and the relative intensity of expression. Thus, in utero exposure to POPs alters hepatic gene expression in the dam and the fetus; these changes may have functional implications.
The study described here was carried out to establish whether or not chloroquine was excreted in semen. Chloroquine was assayed in the semen of eight male volunteers (aged between 19 and 45 years) by a fluorimetric method before and after taking a total dose of 1.500 mg chloroquine base corresponding to the accepted dosage of the drug in malarial chemotherapy. Mean preand post-drug administration levels of 0.7 f 0.2 p~ and 5.7 f 0.6 p~ were obtained respectively, indicating a significant excretion of chloroquine in semen.
Tributyltin (TBT) is an environmental contaminant, exhibiting well-established toxicity to reproductive systems in aquatic organisms. Little information exists regarding the effects of TBT on mammalian reproduction. Cellular junctions are crucial for sperm development and maturation. Intercellular tight junctions are formed by transmembrane proteins such as claudins (Cldns), while the formation of tight junctions involves signaling components of adhering junctions, comprised of cadherins. The objectives of this study were to determine the effects of in utero exposure to TBT on the rat ventral prostate. Pregnant Sprague-Dawley rats were given doses of TBT (2.5, 10, or 20 mg/kg) throughout gestation and sacrificed at Day 91. Ventral prostate weights of TBT-treated rats were decreased in all treatment groups. Results of gene expression macro-array analysis indicated that numerous genes related to cellular adhesion and cell polarity were affected. Cldn-1 mRNA levels decreased after exposure to TBT. Cldn-1 was immunolocalized to the apical lateral margins of adjacent prostatic epithelial cells in controls, but was increasingly dispersed along the lateral plasma membrane with increasing TBT dose, suggesting that the targeting of Cldn-1 or its localization to tight junctions was altered as a result of fetal TBT exposure. E-cadherin mRNA levels and immunolocalization were decreased in a dose-dependent manner. These data indicate that in utero TBT exposure results in permanent alterations in ventral prostate and that these are associated with alterations in the expression and distribution of cell adhesion and tight junctional proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.