Metal components with applications across a range of industrial sectors can be manufactured by selective laser melting (SLM). A particular strength of SLM is its ability to manufacture components incorporating periodic lattice structures not realisable by conventional manufacturing processes. This enables the production of advanced, functionally graded, components. However, for these designs to be successful, the relationships between lattice geometry and performance must be established. We do so here by examining the mechanical behaviour of uniform and graded density SLM Al-Si10-Mg lattices under quasistatic loading. As-built lattices underwent brittle collapse and non-ideal deformation behaviour. The application of a microstructure-altering thermal treatment drastically improved their behaviour and their capability for energy absorption. Heat-treated graded lattices exhibited progressive layer collapse and incremental strengthening. Graded and uniform structures absorbed almost the same amount of energy prior to densification, 6.3 ± 0.2 MJ/m 3 and 5.7 ± 0.2 MJ/m 3 , respectively, but densification occurred at around 7% lower strain for the graded structures. Several characteristic properties of SLM aluminium lattices, including their effective elastic modulus and Gibson-Ashby coefficients, C 1 and α, were determined; these can form the basis of new design methodologies for superior components in the future.
A hot melt 3D inkjet printing method with the potential to manufacture formulations in complex and adaptable geometries for the controlled loading and release of medicines is presented. This first use of a precisely controlled solvent free inkjet printing to produce drug loaded solid dosage forms is demonstrated using a naturally derived FDA approved material (beeswax) as the drug carrier and fenofibrate as the drug. Tablets with bespoke geometries (honeycomb architecture) were fabricated. The honeycomb architecture was modified by control of the honeycomb cell size, and hence surface area to enable control of drug release profiles without the need to alter the formulation. Analysis of the formed tablets showed the drug to be evenly distributed within the beeswax at the bulk scale with evidence of some localization at the micron scale. An analytical model utilizing a Fickian description of diffusion was developed to allow the prediction of drug release. A comparison of experimental and predicted drug release data revealed that in addition to surface area, other factors such as the cell diameter in the case of the honeycomb geometry and material wettability must be considered in practical dosage form design. This information when combined with the range of achievable geometries could allow the bespoke production of optimized personalised medicines for a variety of delivery vehicles in addition to tablets, such as medical devices for example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.